WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 10 | 11 || 13 | 14 |   ...   | 31 |

В то же время некоторые виды растений (в частности, тростник) значительно лучше растут на аммиачном азоте, чем на нитратной среде. Некоторые растения способны утилизировать и аминокислоты. Так, добавление в среду аминокислот увеличивает биомассу тростника на 25-40%. Хотя аминокислоты усваиваются растениями незначительно, однако они оказывают большое влияние на интенсивность фотосинтеза. При недостатке азота в толще воды многие растения способны извлекать его своими корнями из донных отложений (Кокин, 1982).

Фосфор относится к числу наиболее дефицитных элементов, определяющих развитие растений. По значимости он занимает второе место после азота. Основное физиологическое значение этого элемента состоит в том, что он входит в состав макроэнергетических соединений, участвующих в запасании и расходовании энергии в процессе клеточного обмена.

Фосфор в природных водоемах встречается в основном в трех формах:

- растворенный фосфатный;

- растворенный органический;

- нерастворенный органический (во взвешенных частицах).

Кроме того, он входит в состав первичных минералов и встречается в форме фосфатов кальция, фосфатов или оксифосфатов железа.

Среднее содержание фосфора в пресных озерах и реках составляет 30-мкг/л (хотя чаще всего бывает значительно ниже), причем большая его часть находится в виде органических соединений. Максимум фосфатов наблюдается зимой. По мере развития фотосинтезирующих организмов концентрация фосфора в толще воды постепенно понижается, достигая во второй половине лета минимальных значений. При цветении водорослей его количество в эпилимнионе может понижаться до нулевых значений. Отмершие планктонные организмы, их фекалии, опад водных растений, различная ветошь выносит соединения фосфора на дно или в нижние слои водоема. Стратификация вод способствует обеднению эпилимниона (где интенсивно осуществляется фотосинтез растений) фосфором и наоборот, приводит к увеличению его концентрации в придонных слоях и на дне.

Гидробионты оказывают большое влияние на седиментацию фосфора и его извлечение из грунта. Особую роль в процессах седиментации играют планктонные фильтраторы (ракообразные, коловратки). Они являются основными потребителями сестона (планктонных водорослей, бактерий и детрита) в пресных водоемах. Их фекалии оседают с относительно большой скоростью, «пробивают» термоклин и довольно быстро оказываются на дне.

Планктонные водоросли минерализуются в основном в эпи-и металимнионе.

Извлечение фосфора из грунта – прерогатива высших водных растений.

Они своей корневой системой способны извлекать фосфор с глубины до метра и более.

Осенью и весной во время перемешивания вод толща водоема обогащается соединениями фосфора. Кроме того, в открытую часть водоема фосфор поступает из литорали при разложении прибрежных растений.

Фосфор потребляется водной растительностью в виде фосфатов. В ионной форме фосфор находится главным образом в виде Н2РО4-, в меньшей степени – РО42-, и еще в меньшем количестве присутствуют ионы НРО43-.

Содержание тех или иных производных форм фосфорной кислоты в природных водах зависит от величины рН.

Органические соединения фосфора разлагаются бактериями родов Pseudomonas, Bacillus, грибами из родов Penicillium, Aspergillus, Rhiropus, Trichthecium, некоторыми актиномицетами, дрожжами и другими микроорганизмами.

Ряд неорганических форм фосфора представлены нерастворимыми фосфатами кальция, которые либо недоступны, либо слабо доступны растениям.

Однако многие микроорганизмы могут переводить нерастворимые соединения фосфорной кислоты в растворимую форму. К ним относятся представители бактерий, актиномицетов, грибов и других групп микроорганизмов.

Растворение фосфатов происходит при появлении в среде достаточного количества углекислого газа или различных кислот.

Появившийся в процессе дыхания или разрушения органического вещества углекислых газ (СО2) переходит в углекислоту, которая достаточно быстро растворяет нерастворимый фосфат:

Ca3(PO4)2 + 2СО2 + 2H2O 2CaHPO4 + Ca(HCO3)Мобилизация нерастворимых соединений фосфора происходит также благодаря образованию микроорганизмами органических кислот при неполном окислении углеводов или их брожении.

В некоторых случаях растворению фосфатов способствует азотная кислота, образуемая нитрифицирующими бактериями.

В анаэробных условиях при наличии свободного сероводорода фосфор переходит из иловых отложений в водную среду. Таким образом, соединения фосфора не захороняются в донных отложениях, а активно участвуют в круговороте веществ.

Все эти процессы повышают доступность фосфора для растений, и в первую очередь – прибрежных, так как перечисленные выше процессы наиболее интенсивно протекают в литорали.

В настоящее время в водоемы с сельскохозяйственных угодий поступает значительное количество фосфора. Это довольно часто приводит к их эвтрофированию.

Для прибрежно-водных растений азот и фосфор не являются лимитирующими элементами (в отличие от фитопланктона, обитающего в открытой части водоема). Растения потребляют эти элементы из водной среды и донных отложений. Кроме того, существенное их количество поступает в водоемы с различными стоками и паводками.

АКТИВНАЯ РЕАКЦИЯ СРЕДЫ (рН) В природных водоемах часть молекул воды (а также и других веществ) находится в состоянии диссоциации, то есть, расщеплены на положительно (катионы) и отрицательно (анионы) заряженные ионы. Так, молекула воды диссоциирует на ион водорода (Н+) и ион гидроксила (ОН-):

Н2О Н+ + ОН- Скорости диссоциации и образования молекул воды равны, поэтому произведение концентрации ионов водорода и гидроксила в воде является постоянной величиной – константой равновесия воды, которая равна 10-14 моль2 кг-2. В чистой воде концентрация Н+ и ОН- равны, поэтому концентрация каждого иона равна 10-7 моль кг-1.

Если в растворе больше ионов водорода, чем ионов гидроксила, то этот раствор кислый; при избытке ионов гидроксила раствор становится щелочным.

Таким образом, концентрация каждого из ионов – водорода и гидроксила – является мерой кислотности или щелочности раствора.

Концентрация водородных ионов или активная реакция среды, выражается показателем рН. Он используется для характеристики кислотности и щелочности раствора.

Концентрацию этих ионов в связи с малой величиной принято обозначать в виде их логарифмов, взятых с обратным знаком. Если раствор нейтральный, то концентрация ионов водорода равна 10-7 моль кг-1 и рН = - lg10-7 моль кг-1 = 7. В щелочной среде рН >7, в кислой - < 7.

В природных водоемах активная реакция среды редко бывает нейтральной и подвержена значительным колебаниям. Это связано с тем, что в среде находятся и другие вещества, способные распадаться на ионы, нарушающие равновесие между ионами Н+ и ОН-. Таким образом, активная реакция характеризует состояние веществ в растворе.

Все пресноводные бассейны можно объединить в две основные группы:

воды нейтрально-щелочные с рН >6 и воды торфяные с рН <5 (Зернов, 1949). В природе встречаются и отклонения от этих двух групп. В период массового развития фитопланктона и в зарослях высшей водной растительности активная реакция среды смещается в щелочную сторону с рН = 7,8-8,8 и даже 9,5-10,5.

В сфагновых озерах и болотах, богатых гуминовыми веществами, рН = 4,0-4,или 3,4-3,8.

В природных водоемах величина рН зависит от многих физикохимических и биологических факторов. Из физико-химических факторов наибольшее значение имеет наличие в среде углекислоты и углекислых солей – карбонатов и бикарбонатов. Эти вещества в основном регулируют рН среды, как в морских, так и пресных водоемах.

При растворении СО2 в воде происходит образование угольной кислоты, которая диссоциирует с образованием ионов Н+ и НСО3- и способствует, таким образом, подкислению воды. Углекислые соли находятся в водоемах в виде карбонатов и бикарбонатов. В растворах эти соли диссоциируют с образованием гидроксильных ионов, в результате чего происходит подщелачивание воды.

На изменение величины рН большое влияние оказывают происходящие в водоемах биологические процессы. Дыхание гидробионтов, разложение органического вещества, сопровождающиеся выделением СО2, способствуют повышению кислотности воды. Потребление СО2 растениями при фотосинтезе, наоборот, подщелачивает среду. Летом при интенсивном развитии фитопланктона и прибрежных водных растений, в поверхностных слоях воды происходит повышение значений рН до 9-10.

Сильное подщелачивание воды во время развития растений связано не только с тем, что они потребляют свободную углекислоты, но и тем, что в этот период в воде накапливаются карбонаты: растения отщепляют углекислоту от бикарбонатов, переводя их тем самым в карбонаты.

В морских водоемах активная реакция среды слабощелочная. Она практически постоянна и колеблется лишь в пределах от 8,0 до 8,3. Это связано с сильной забуференностью среды и относительно слабым развитием фитопланктона.

В пресных водоемах активная реакция среды испытывает сезонные колебания. Зимой в результате замедления жизнедеятельности организмов рН составляет 7,0-7,5, летом она возрастает, а в периоды цветения водорослей и активной вегетации водных растений достигает 9-10.

Наблюдаются и суточные изменения величины рН, в основном летом, что связано с высокой активностью биологических процессов в дневное время.

Изменяется значение рН и с глубиной: в придонных слоях, где отсутствует фотосинтез, наблюдается повышение кислотности воды (Березина, 1973).

В водоемах кислого типа рН среды более постоянен, и меньше зависит от жизнедеятельности организмов, так как их население очень бедно.

Подкисление болотных вод связано также с деятельностью мха сфагнума, способного избирательно адсорбировать различные катионы солей, замещая их водородными ионами. За счет этого рН повышается до 4; когда наступает ионное равновесие процесс обмена приостанавливается (Кокин, 1982).

Активная реакция среды оказывает влияние на жизнедеятельность водных организмов. Это влияние может быть как прямым, так и косвенным.

Косвенное влияние проявляется через изменение содержания в воде различных соединений макро- и микроэлементов, растворимость которых (а, соответственно, и доступность для водных организмов) во многом зависит от величины рН. Так, многие водоросли не могут существовать при слишком высоких значениях рН из-за низкой растворимости многих микроэлементов.

Непосредственное влияние рН среды на организм сводится к воздействию водородных и гидроксильных ионов на проницаемость клеточных мембран, а, соответственно, и на их метаболизм.

Активная реакция среды определяет наличие в среде биогенных элементов и степень их доступности для прибрежно-водной растительности и фитопланктона. Это связано с тем, что многие элементы в щелочной среде переходят в нерастворимую форму, тогда как в кислой среде растворимость их, а, соответственно, и доступность для растений повышается.

Активная реакция среды имеет большое экологическое значение.

Изменение рН среды влияет на выживаемость организмов, интенсивность питания, рост, уровень газообмена и другие жизненные процессы.

Величина рН оказывает влияние и на водную растительность, в первую очередь погруженную. Наиболее благоприятные условия для развития прибрежно-водных растений - это слабощелочные воды; в кислых водоемах они растут значительно хуже.

Погруженная водная растительность в большей степени зависит от величины рН, состава и концентрации газов, химического состава илов, чем растения с плавающими и надводными листьями.

ГАЗОВЫЙ РЕЖИМ ВОДОЕМОВ Наибольший интерес в газовом режиме водоемов представляет концентрация кислорода (О2), свободной углекислоты (СО2), сероводорода (Н2S) и метана (СН4).

Газовый режим морей и пресных водоемов тесно связан с термическими и биологическими процессами, активной реакции среды (рН) и др.

Распределение газов по глубине иногда приобретает довольно сложный характер, объясняемый индивидуальными особенностями водоемов и интенсивностью биологических процессов (Давыдов, Дмитриева, Конкина, 1973).

Кислород – один из основных факторов, обеспечивающих наличие жизни в водоемах. Обогащение воды кислородом в основном происходит за счет его инвазии (вторжения) из атмосферы и выделения фотосинтезирующими организмами. Убыль О2 происходит в результате его эвазии (выхода) из воды в атмосферу и потребления при дыхании животных и растений (Константинов, 1979).

Коэффициент адсорбции О2 водой при О0С равен 0,04898.

Следовательно, при нормальном содержании этого газа в атмосфере (210 мл/л) в 1 л воды окажется растворенным 210 мл х 0,04898 = 10,29 мл кислорода. На содержание кислорода в воде большое влияние оказывает ветровое волнение и течения. Роль диффузии О2 из атмосферы в спокойной воде имеет весьма малое значение.

Кислород отличается умеренной растворимостью в воде, которая зависит от ряда факторов, прежде всего от температуры и солености. С повышением температуры и солености коэффициент адсорбции уменьшается и величина содержания О2 в воде снижается (Табл. 4).

Кислородный режим водоемов зависит от многих факторов. Учитывая, что инвазия О2 из атмосферы происходит только через поверхность воды, а зона фотосинтеза располагается в верхнем слое, последний, как правило, более насыщен кислородом, чем нижележащая толща. В процессе фотосинтеза растения выделяют огромное количество кислорода. В отдельные периоды сезона его содержание в воде оказывается в 3-4 раза большим, чем при тех же условиях О2 мог бы раствориться из атмосферы.

Абсолютный показатель содержания кислорода в водоеме еще не показывает полностью, много или мало его в воде при данных условиях.

Поэтому очень часто используют иной показатель - относительное содержание О2 в воде (в процентах насыщения воды кислородом по отношению к нормальной величине его растворимости при данной температуре и давлении):

О2 = а 100 760/ N Р (%) где: а – количество кислорода в воде, N - нормальное количество кислорода при данной температуре и давлении 760 мм рт. ст., Р – атмосферное давление.

Пересыщение воды кислородом особенно бывает значительным при цветении фитопланктона. В морских водоемах максимальное содержание кислорода в поверхностных слоях не превышает 110-120% полного насыщения.

Зона фотосинтеза находится в верхнем слое (до глубины 20-50 м), который, как правило, более насыщен кислородом, чем остальная толща воды. В пресных водоемах концентрация водорослей выше, а фотосинтез осуществляется более интенсивно; концентрация О2 нередко достигает 300% и более от полного насыщения воды кислородом.

Таблица 4.

Растворимость атмосферного кислорода в воде в зависимости от температуры и солености (мл/л) Соленость, % Темпера- тура, 0С 0 1 2 3 0 10,29 9,65 9,01 8,36 7,10 8,02 7,56 7,10 6,63 6,20 6,57 6,22 5,88 5,53 5,30 5,57 5,27 4,96 4,65 4,Снижение концентрации кислорода в воде осуществляется в результате его выхода из воды в атмосферу из пересыщенной воды кислородом. Особенно интенсивно это осуществляется при повышении температуры. Значительное количество кислорода тратится организмами при дыхании. Особенно велико потребление О2 бактериями – до 90% от всего количества, потребляемого другими организмами. Кроме того, часть кислорода расходуется на окисление минеральных и органических соединений.

Поступление кислорода в водоем (из атмосферы и фотосинтеза растений) ограничивается только верхним его слоем. Потребление кислорода на дыхание и окислительные процессы проходит во всей толще, в том числе и на дне.

Поэтому в водоемах с интенсивными деструкционными процессами дефицит кислорода бывает весьма значительным.

В больших и глубоких водоемах (в основном олиготрофного типа) с относительно низкими температурами воды в течение большей части года и малым содержанием биогенных элементов кислородный режим связан с температурой и условиями перемешивания водных масс. Содержание кислорода в этих водоемах повышенное и близкое к полному насыщению.

Максимальная концентрация кислорода (мг О2/л) в этих водоемах наблюдается в предледоставный период, что соответствует хорошей его растворимости при низкой температуре. В период весенней и осенней гомотермии кислород распределяется равномерно во всей толще. Летом кислородный максимум может несколько смещаться вглубь толщи воды (за счет фотосинтетических процессов микроводорослей).

Pages:     | 1 |   ...   | 10 | 11 || 13 | 14 |   ...   | 31 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.