WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 | 2 || 4 | 5 |   ...   | 23 |

Круговорот фосфора: а) усвоение растениями (продуцентами); б) потребление животными (консументами), редуцентами; в) дефосфорилирование. В природном круговороте фосфора имеется существенный его дефицит, около 2 млн т в год. Это потери его растворимых соединений, включенных в природный круговорот воды. Достигая с водой океана, они теряются на его дне в отложениях. В круговорот из океана возвращается лишь около 60 тыс. т фосфора в год в виде прибрежного гуано (помет и останки птиц, питающихся рыбой) и рыбной муки из выловленной рыбы. Считается, что круговорот фосфора – единственный в природе пример простого незамкнутого цикла. Человек, производя фосфорные водорастворимые удобрения, ускоряет убыль природных фосфатов, расходуя около 3 млн т в год апатита и фосфоритов. При таком расходе их хватит примерно на 10 тыс. лет.

Круговорот кислорода. Запасы кислорода в биосфере очень большие, примерно 50% ее массы. В ней он самый распространенный элемент. Основное количество связанного кислорода приходится на гидросферу и литосферу. В песке его около 53%, глине – 56%, воде – 89%. Свободный кислород содержится в атмосфере в количестве 1 200 000 млрд т, что составляет лишь 0,01% его общего количества. Большая часть атмосферного кислорода – продукт фотосинтеза растений.

Схема круговорота кислорода: а) генерация растениями в процессе фотосинтеза (около 16 млрд т/год); б) потребление живыми организмами при дыхании; в) расход на окисление биогенного вещества.

Для высших форм жизни (растения, животные) пригодно аэробное дыхание – прямое окисление кислородом органики, например, глюкозы:

C6H12O6 + 6O2 6CO2 + 6H2O + 2880 кДж/моль. (1.4) Большое количество энергии, которая выделяется при дыхании и окислении веществ в организме с участием кислорода, идет на поддержание жизнедеятельности высших организмов, которая требует значительных энергетических затрат, например, при перемещениях. Для низших организмов большое выделение тепла опасно. Они приспособились проводить окисление органики в анаэробных условиях (без О2) с помощью ферментов (см. выше).

Скорость круговорота кислорода в биосфере в нашу эпоху составляет около 2500 лет.

Небольшая часть кислорода постепенно уходит в осадочные породы: карбонаты, сульфаты. Однако эти процессы идут весьма медленно и в целом не влияют на главный круговорот атмосферного кислорода. Опасность представляет антропогенный фактор. Так, за последние 100 лет человеком при сжигании топлива изъято из атмосферы около 250 млрд т кислорода и добавлено около млрд т СО2. Ежегодный прирост расхода кислорода человеком около 5%.

Круговорот воды. Воды на Земле много – 1,5 млрд км3, но пресных вод меньше 3%. Основная масса пресной воды – 29 млн км3 (75%) – находится в ледниках Арктики и Антарктиды, около млн км3 – в атмосфере, 1 млн км3 – в живых организмах. Лишь всего 0,003% воды, т.е. около 0,04 млн км3, представляют объем ежегодно возобновляемых водных ресурсов.

Большой круговорот воды (40–45 тыс. км3): а) испарение воды в океанах и на суше под действием Солнца; б) перенос паров воды с воздушными массами; в) выпадение воды из атмосферы в виде дождя и снега; г) поглощение воды растениями и почвой, д) сток воды по поверхности суши и возвращение в моря и океаны.

Этот круговорот воды хорошо замкнут. Он вместе с энергией Солнца является важнейшим фактором обеспечения жизни на Земле, так как при этом происходит перенос и перераспределение не только воды – основы жизни, но и тепла, поглощающегося при испарении воды и выделяющегося при ее конденсации.

Круговорот воды в экосистемах. Здесь различают 4 фазы:

1) перехват, т.е. поглощение воды листьями, кроной, до того как она достигнет почвы; 2) эвапотранспирация: (лат. evaporatio – испарение, transpirere – испарение растениями) – отдача воды экосистемой в атмосферу за счет ее биологического испарения растениями и испарения с поверхности почвы; 3) инфильтрация – просачивание воды в почву, затем перенос грунтовых вод и испарение;

4) сток – потеря воды экосистемой за счет ее стока в ручьи, реки и затем в моря, океаны.

Величина эвапотранспирации – это сумма биологической тран-спирации воды растениями и испарения ее с поверхности почвы. В Европе она оценивается как 3–7 тыс. т/га в год, из них около 1 тыс. т/га за год воды испаряется с поверхности почвы.

Велика биологическая транспирации воды растениями, что необходимо для извлечения питательных веществ и поддержания температурного режима тканей. Так, за день одна береза испаряет 75 л воды, бук – 100 л, липа – 200 л, 1 га леса – 50000 л.

Коэффициент транспирации – количество воды, транспирируемое растением в сезон для создания 1 кг сухого вещества. Он весьма велик и составляет от 300 до 1000 в зависимости от вида растения. Например, для получения 1 т зерна требуется от 250 до 550 т воды.

Пример схемы круговорота воды. Рассмотрим типичное распределение осадков, количество которых составило 770 мм/год.

Эвапотранспирация воды идет в объеме 400 мм/год и слагается из следующих видов (мм/год): перехват кронами – 10, транспирация растениями – 290, испарение с поверхности почвы – 100.

Поверхностный сток воды, равный испарению воды с поверхности моря, составляет 370 мм/год. Его слагаемые (мм/год):

подземный сток – 80, физическое испарение – 265, нужды человека – 25.

Как видно из примера, растениями транспирируется почти 40% воды [ (290 / 770)100%]. Однако на формирование биомассы используется лишь около 1% воды [ (10 / 770)100%].

На бытовые нужды человеком расходуется порядка 3% воды.



В отличие от углерода, азота и фосфора вода проходит через экосистемы почти без потерь.

1.5. Эволюция и равновесие экосистем 1.5.1. Экологическая сукцессия В развитии экосистем различают два вида подвижности: обратимые изменения экосистемы и экологическая сукцессия.

Экологическая сукцессия (лат. sukcedo – следовать) – это последовательная смена во времени биоценозов, т. е. природных сообществ определенного участка земной поверхности.

Рассмотрим ее признаки:

1. Сукцессия – это упорядоченный процесс последовательной смены природных сообществ, связанный с изменением их видовой структуры и протекающих в сообществе процессов.

2. Она происходит в результате изменения физической среды, во-первых, под действием самого же развивающегося сообщества.

Во-вторых, сукцессия протекает под влиянием изменения внешних факторов: влажности, температуры, количества осадков, состава почвы, солнечной радиации.

3. Кульминацией развития сукцессии является климакс – стабилизированная экосистема, эффективность преобразования энергии Солнца в биомассу максимальна и когда максимально возможное количество видов и популяций флоры и фауны, а также связей между ними: пищевых (трофических), территориальных (топических) и др.

Виды сукцессии. Первичная сукцессия начинается на участке, который перед этим не был занят каким-либо сообществом, например, на голой скале, песке, застывшей лаве. Вторичная сукцессия происходит на площади, с которой удалено предыдущее сообщество, например, на заброшенном поле, вырубке леса (табл. 1.1).

Она протекает быстрее, чем первичная, так как на этой территории уже имеются некоторые организмы или их зачатки.

Таблица 1.Пример вторичной сукцессии на заброшенной пашне Возраст, 0 1-2 3-15 15-40 40-100 Более годы Тип об- Голое Злаки, Береза, Сосновый Долгожители:

Трава щества поле кусты осина лес дуб, бук и др.

Другой пример – сукцессия в степном районе на заброшенной проселочной дороге: однолетние сорняки – 2–5 лет; короткоживущие злаки – 3–10 лет; многолетние злаки – 10–20 лет; зрелые злаки – 20–40 лет. Таким образом, природе требуется 20–40 лет, чтобы на голом грунте создать зрелое степное сообщество.

1.5.2. Сукцессия в водной среде Наглядно о сукцессии в водной среде можно судить по переменам в искусственно создаваемых водоемах: прудах, водохранилищах, озерах. Здесь можно выделить три стадии.

Первая стадия – высокопродуктивная стадия «цветения», связанная с большим количеством органического вещества в почве и растительности, которые уходят под воду при заполнении водоема. Для этой стадии характерно обилие питательных веществ, интенсивное их разложение, высокая активность микроорганизмов, низкое содержание кислорода в придонном слое воды, часто быстрый рост рыбы.

Вторая стадия – зрелая стадия развития экосистемы, когда наступает ее стабилизация при некоторой пониженной продуктивности после расхода избытка исходного питания. «Цветение» отсутствует, содержание кислорода в придонном слое повышается.

Рыбы мало.

Третья стадия – это стадия переходных состояний. Она наступает тогда, когда в результате эрозии удобренной почвы или из скотных дворов в водоем поступает большое количество питательных веществ, и повторяются первая и вторая стадии. Такие смены состояния водной среды могут повторяться до тех пор, пока водоем не окажется занесенным почвой.

1.5.3. Значение экологической сукцессии Закономерности экологической сукцессии весьма важны для человечества. Они позволяют грамотно решать задачи рациональ ного природопользования. В таблице 1.2 приведен пример зависимости продуктивности изученной экосистемы сосново-дубового леса от его возраста.

На ранних стадиях экологической сукцессии уровень первичной валовой продукции Пв превосходит уровень дыхания сообщества Д (см. табл. 1.2). В таких системах образуется чистая продукция: Пч = Пв – Д. В зрелых экосистемах фиксированная энергия в основном расходуется на дыхание растений и организмов.

Таблица 1.Изменение составляющих продуктивности лесной экосистемы в процессе ее сукцессии Продуктивность экосистемы, г/м2 в день.

Параметр Отношение Пч/Пв Возраст, годы 10 20 30 40 50 60 70 80 Пв 900 2200 3150 3800 3700 3300 2900 2550 Д 460 1120 1600 2180 2400 2400 2300 2170 Пч 440 1080 1550 1620 1300 900 600 380 Б 140 420 800 1200 1600 2000 2400 2600 Пч /Пв 0,49 0,49 0,49 0,43 0,35 0,27 0,21 0,15 0,Б – создаваемая биомасса.

Уровень дыхания Д приближается к валовой продукции Пв.

Объем чистой продукции снижается до нуля. Отношение Д / Пв свидетельствует о степени приближения экосистемы к состоянию зрелости, а отношение Пч /Пв = (1 – Д / Пв) – о выходе полезной продукции.

Зрелое сообщество способно стабилизировать в своем окружении факторы среды, обеспечить буферы на внешние отклонения от условий существования, особенно на неблагогоприятные воздействия бурь, наводнений, похолоданий, эрозии почвы и т.п.

Эти функции зрелое общество выполняет лучше, чем молодое. Однако в зрелом сообществе чистая продукция резко сокращается (табл. 1.2). Следовательно, такую экосистему невыгодно использовать с целью получения продукции: продуктов питания, выпаса скота, заготовки древесины и т.п. Если же из зрелых экосистем, например лесных, отбирать продукции больше, чем она способна производить, то они будут сведены на нет: продуктивность сильно упадет, почва подвергнется эрозии и т.п. История человечества бо гата негативными примерами уничтожения лесов и нарушения плодородия земель. Так, ныне пустынные пространства Ближнего Востока раньше имели плодородные и лесистые участки. Греция славилась зелеными горами, а ныне эти горы – в основном с каменистыми, весьма бедными почвами. Пустыня Сахара в период одомашнивания диких животных была плодородной областью.





Таким образом, для хозяйственных целей, получения продуктов питания человек должен использовать ранние стадии сукцессии, т.е. молодые сообщества, у которых выход чистой продукции максимален. При этом одной из стратегий деятельности человека должна быть стратегия компромисса между молодыми и зрелыми экосистемами. Так, рациональное лесопользование должно предусматривать не сплошные рубки деревьев на тысячах гектарах, что часто практикуют, а выборочную рубку деревьев в возрасте хозяйственной спелости.

Стратегия расчленения предусматривает такой порядок хозяйствования, при котором можно было бы на разных участках угодий поддерживать, например, интенсивное производство зерна и нетронутую природу, которая стабилизирует в своем окружении экосистемы и в итоге дает возможность человеку стабильно получать продукцию. Некоторые ученые полагают, что крайне рискованно выводить из естественного равновесия более 2/3 территории, занятой природной растительностью.

1.5.4. Гомеостаз экологических систем Гомеостаз (греч. homoios – подобный, одинаковый; stasis – стояние) – способность биологических систем противостоять изменениям условий жизни и сохранять состояние равновесия.

Экологическое равновесие – это состояние экосистемы, при котором состав и продуктивность биоценоза в любые конкретные моменты времени наиболее полно соответствуют абиотическим (неживым) условиям – почве, климату, наличию влаги.

Обратимые изменения в экосистеме – это изменения экосистемы в течение года, от весны и до весны, при колебаниях климата в разные годы и изменения роли некоторых видов в связи с ритмами их жизненного цикла. При таких изменениях видовой состав экосистемы сохраняется, она лишь подстраивается к колебаниям внешних и внутренних факторов. В отдельные сезоны года некоторые компоненты экосистемы могут отсутствовать или впадать в со стояние глубокого покоя: отлет птиц на зиму, захоронение семян в засушливый год, зимняя спячка насекомых и некоторых животных.

Экосистемы, как и организмы, способны к саморегулированию и самоподдержанию. Например, численность любой популяции регулируется в таких пределах, чтобы избежать перенаселения экосистемы. Как и в технических системах, в экосистемах осуществляется два вида обратной связи. Положительная обратная связь – это связь, усиливающая отклонение, необходимое для выживания и роста организмов. Отрицательная обратная связь – это связь, ослабляющая действие благоприятных факторов и позволяющая избежать, например, стремительного разрастания популяции того или иного вида организмов.

В больших, зрелых экосистемах поддерживается самокорректирующийся гомеостаз в результате взаимодействия круговорота веществ и потока энергии (см. п. 1.4). В связи с этим экосистемы Земли и сама биосфера находятся в устойчивом состоянии.

Однако устойчивость экосистем и действие механизмов саморегуляции имеют предел, по достижении которого усиливающиеся обратные связи приводят к гибели системы. Примеры опустынивания территорий приведены выше. Другой пример – глобальное вмешательство человека в земной круговорот энергии и веществ посредством сжигания все в больших количествах ископаемого топлива.

К какой это приведет экологической катастрофе пока трудно предсказать.

Контрольные вопросы 1. Что такое охрана биосферы Предмет курса «Охрана биосферы».

2. Что такое природа, биосфера, природная среда Каковы составные части биосферы 3. Что обозначают термины: биомасса, живое и биогенное вещество 4. Что такое биоценоз, биотоп, фито-, зоо- и микробиоценозы 5. Как В.И. Вернадский характеризует ноосферу 6. Что такое экология Этапы развития экологии, ее разделы.

7. Что изучает автоэкология, популяционная экология и синэкология 8. Что такое экосистема, биогеоценоз Каковы их разновидности 9. Каковы основные элементы экосистем, виды живых организмов 10. Каковы стадии эволюции Земли и биосферы Когда и как возникла жизнь на Земле 11. Как и какие факторы воздействуют на живые организмы Их группы, виды, названия.

12. Что такое биотические факторы Каковы виды взаимоотношений живых организмов 13. В чем различие между автотрофными и гетеротрофными организмами 14. Каковы виды абиотических факторов В чем их значение для биосферы 15. Как и какие факторы воздействуют на среду обитания живых организмов 16. Каковы стадии, циклы биогенного вещества В чем сущность стадий его круговорота 17. Каковы виды продуктивности биосферы 18. Каковы схема и эффективность преобразования энергии в биовещество 19. Что отображают экологические пирамиды Их виды.

20. Каковы жизненно активные формы углерода и как они участвуют в биохимических циклах 21. Каковы виды круговоротов углерода Причины дебаланса круговоротов углерода.

22. Из каких процессов слагается круговорот азота Каковы объемы получения связанного азота 23. Что такое нитрификация и денитрификация Причины загрязнения биосферы нитратами.

24. Какова схема круговорота фосфора Каковы его усвояемые формы и причина их потерь Что такое дефосфорилирование 25. Какова схема круговорота кислорода Что такое аэробное и анаэробные дыхание Как человек влияет на круговорот кислорода 26. В чем сущность круговорота воды: большого и в экосистемах Их значение для биосферы.

Pages:     | 1 | 2 || 4 | 5 |   ...   | 23 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.