WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |   ...   | 14 |

Однако для них имеет большое значение содержания кислорода, который часто бывает в дефиците, а временами может вовсе исчезать. В связи с этим, существующие классификации экосистем учитывают, в первую очередь, содержание кислорода в водоеме.

Водные организмы находятся в условиях более слабой освещенности, чем наземные, а расположенные на глубинах водоемов (и в подземных водах) совершенно лишены света и их живые компоненты могут существовать только за счет поступления органических свет Солнечный веществ извне. Поэтому в системе гидробиоценозов гораздо сильнее выражена вертикальная дифференциация (стратификация). В связи с вертикальной расчлененностью водной среды типы водных сообществ выделяются по совершенно иному принципу, чем типы биогеоценозов. Последние в большинстве случаев, как указывает В.Н. Сукачев, совпадают с границами растительных ассоциаций на поверхности земли, в то время как типы гидробиоценозов различаются главным образом по их положению в пространстве.

Это уже описанные нами планктон, нектон, бентос, перифитон.

Организмы в водоемах биохимически и осмотически более тесно связаны с окружающей их средой и зависят от содержания в ней растворимых веществ. Благодаря значительно большей, чем у воздуха, плотности воды, многие водные организмы пребывают в свободно плавающем или парящем состоянии, поскольку вода содержит пространственно-распределенный источник пищи в виде взвешенной массы органических веществ и микробов. Вода одновременно создает возможность биохимических связей между сообществами гидробионтов за счет выделения многими организмами в воду кислорода, углекислоты и различных продуктов метаболизма. Эти вещества, токсичные, либо, наоборот, стимулирующие другие организмы, образуют как бы сеть, по которой организмы сообщаются косвенно, не вступая друг с другом в прямой контакт.

Население гидросферы значительно разнообразнее, чем наземное, хотя во внутренних водоемах состав флоры и фауны сильно обеднен по сравнению с морями из-за выпадения многих групп. Основную массу первичных продуцентов составляют взвешенные в воде микроскопические водоросли, в то время как на суше - это почти исключительно крупные растения, с корнями в почве. Несмотря на чрезвычайно мелкие размеры планктонных водорослей, они обладают весьма высоким темпом размножения и могут давать очень высокую первичную продукцию, за счет которой развивается местами богатейшее животное население.

В горизонтальном направлении водные сообщества, как и биогеоценозы, также неоднородны. Биотопы определяются преимущественно физическими свойствами среды и группируются по экологическим зонам, на которые делятся водоемы: например, в озерах бенталь подразделяется на литораль (прибрежная зона), сублитораль (до нижней границы распространения высших растений), профундаль. Внутри каждой зоны может быть выделено по несколько биотопов и соответствующих им биоценозов (например, на разных грунтах).

Гидробиоценозы, как и наземные экосистемы (в первую очередь, фитоценозы), обладают хорошо выраженной изменчивостью во времени. Сезонная (годовая, суточная или иная циклическая) динамика, вызванная изменениями температуры, наблюдается как в ценозах высшей водной растительности, отмирающей с наступлением осени, так и в планктонных сообществах, состоящих из видов с кратким жизненным циклом. В меньшей мере выражены сезонные изменения в бентосе, остающемся в крупных водоемах на зиму в почти полном составе и количестве, хотя в некоторые периоды его гетеротопные группы (насекомые) покидают водоем.

Межгодовые (или многолетние) изменения в водоемах выражены не менее, если не более ярко, чем в биогеоценозах, и, в основном, происходят в результате тех же причин:

изменения климатических условий и деятельности человека. В гидробиоценозах постоянно происходят также изменения в соотношении видов и их обилии, причины которых часто не удается установить. Эти ненаправленные изменения колебательного типа называют флуктуациями, противопоставляя их сукцессиям – изменениям в течение ряда лет, направленным в одну сторону. Сукцессии часто наблюдаются в гидробиоценозах и представляют собой обычно продолжающийся в течение ряда лет процесс постепенного приспособления сообществ гидробионтов к сильно изменившимся абиотическим условиям. Мы наблюдаем их при различных естественных изменениях режима водоемов, а в еще большем масштабе – при возникновении новых водоемов или водохранилищ (на затапливаемой, например, вследствие сооружения плотины, долине реки).

8.3 ПРОЦЕССЫ ЖИЗНЕДЕЯТЕЛЬНОСТИ ГИДРОБИОНТОВ Основные процессы жизнедеятельности гидробионтов те же, что и у любых других организмов. Это – питание, которое может быть автотрофным или гетеротрофным, а при совмещении этих типов – миксотрофным. Эти вопросы достаточно полно освещены в общих курсах биологии, а понятия рациона, ассимиляции пищи, трат на основной обмен и размножение прекрасно описаны в сводке Ю. Одума (1986).

III ФУНКЦИОНИРОВАНИЕ ВОДНЫХ ЭКОСИСТЕМ 9 ПРОДУКЦИЯ В ВОДНЫХ ЭКОСИСТЕМАХ Вообще, продукционные процессы достаточно глубоко изучаются в курсе экологии, поэтому здесь мы вкратце напомним некоторые понятия.

Первичная продукция – новообразование органического вещества из неорганического. Она создается в процессе фотосинтеза и, в значительно меньшей степени, хемосинтеза. В ходе фотосинтеза энергия Солнца, улавливается фотосинтетическими пигментами (г.о. хлорофиллом) и связывается в энергию химических связей органических веществ. Говоря о первичной продукции нужно выделять валовую первичную продукцию и чистую первичную продукцию.



Валовая первичная продукция – общая скорость фотосинтеза, все создание органического вещества, в том числе и того, которое используется самими растениями на поддержание их существования (на обмен, на дыхание).

Чистая первичная продукция – или эффективная первичная продукция представляет собой скорость создания органического вещества за вычетом доли, используемой самими же организмами на процессы жизнедеятельности. Эту часть первичной продукции называют еще ассимиляцией.

Чистая продукция сообщества или продуктивность сообщества – скорость накопления органического вещества сообществом после выедания этого вещества консументами. Прирост массы консументов называют вторичной продукцией, но ее источник – первичная продукция.

Вопросы определения первичной и вторичной продукции, продуктивности гидробиоценозов достаточно полно описаны в отечественной и переводной литературе, поэтому можно порекомендовать студентам обратиться к таким источникам как Ю.Одум (1986), А.Ф. Алимов (1989), Мониторинг фитопланктона (1992), Оценка продуктивности фитопланктона (1993) и мн. др.

10 СПЕЦИФИКА ВОДНЫХ ЭКОСИСТЕМ ЦИКЛИЧЕСКОГО, ТРАНЗИТНОГО И КАСКАДНОГО ТИПОВ Лотические и лентические водные экосистемы принципиально отличаются по характеру происходящих в них экологических процессов. Водоемы замедленного водообмена (лентические: озера, пруды и т.п.) являются, как правило, водоемами автохтонными. Это значит, в переводе с греческого, – экосистемами способными «прокормить» себя самостоятельно. Большая часть первичной продукции в этих водоемах производится их собственным растительным населением – фитопланктоном и фитобентосом (продуцентами). Затем эта первичная продукция используется зоопланктоном, зообентосом, нектоном (консументами) и, минерализуясь редуцентами, возвращается в виде исходного материала продуцентам. В общем виде это можно представить в следующем виде (рис. 29).

В типичном большом озере основной поток энергии и круговорот вещества совершается в планктонном сообществе экосистемы пелагиали (рис. 30).

В водотоке, или системе транзитного типа (лотической системе: реке, ручье) планктон не может играть решающую роль просто в силу физических причин – его сносит течением. В глубоких, медленно текущих реках в роли главного продуцента выступает фитобентос – высшая водная растительность. Основными потребителями их продукции выступают зообентос и нектон (рис. 31).

Если мы обратимся к мелким быстротекущим водотокам (ручьям и мелководным рекам), то обнаружим, что основное питание их обитатели получают снаружи (аллохтонные экосистемы). Органическое вещество поступает с берегов, в виде опада листьев, трупов животных и т.п. (рис. 32).

В водных экосистемах каскадного типа (системы водохранилищ, группы сообщающихся меж собой проточного типа озер, глубокие водотоки), совмещающих лотические и лентические участки, системы кругооборота вещества чередуются. На быстротекущих участках они осуществляются по лотическому типу (с преобладанием транзитного типа аллохтонного питания системы), в заводях и участках с медленным течением – по лентическому типу (автохтонные участки).

Фитопланктон Фитобентос Нектон Зообентос Зоопланктон Бактерии Рис. 29. Кругооборот веществ в идеализированной экосистеме водоема Фитопланктон Фитобентос Нектон Зообентос Зоопланктон Бактерии Рис. 30. Кругооборот веществ в идеализированной экосистеме гидробиоценоза циклического типа (лентического). Жирные стрелки – основные потоки вещества, тонкие – второстепенные Фитопланктон Фитобентос Нектон Зообентос Зоопланктон Бактерии Рис. 31. Кругооборот вещества в идеализированной экосистеме гидробиоценоза транзитного типа (лотического) Фитопланктон Фитобентос Аллохтонное Нектон вещество Зоопланктон Бактерии Зообентос Рис. 32. Кругооборот вещества в идеализированной аллохтонной экосистеме гидробиоценоза транзитного типа (лотического) 11 ПРИМЕР СЕЗОННОЙ ДИНАМИКИ ВОДНОГО СООБЩЕСТВА Рассмотрим сезонную динамику планктонного сообщества на примере димиктического озера Байкал. Рассматривать будем события происходящие в верхнем трофогенном слое 0-50 м, где в течение большей части года создается основная часть первичной продукции за счет фотосинтеза и концентрируется основная масса зоопланктона (Кожов, 1972). В качестве примера возьмем 1999 г., подробно описанный А.В. Мокрым (2006).

Схема биологических сезонов на озере Байкал принята по М.М.Кожову (1962). Это не общепринятые зима, весна, лето, осень, а 6 сезонов, отличающиеся по средней температуре верхнего слоя воды (табл. 15). Ход температуры воды приведен на рис. 33.

На рис. 34 представлен ход общих биомасс фитопланктона и зоопланктона.

Отчетливо прослеживается, что пики биомассы зоопланктона следуют за пиками биомассы фитопланктона, что вполне естественно, поскольку первый питается последним. Пикам биомассы зоопланктона, соответственно, приурочены минимумы фитопланктона и наоборот.

Глава написана в соавторстве с А. В. Мокрым Таблица Биологические сезоны в открытых водах озера Байкал Весна Лето Осень Зима Показат Ранневесенний Поздневесенний Раннее, июль – 1- Позднее, август – Декабрь – ель (подледный) период (переходный) период Октябрь – ноябрь я декада августа сентябрь январь Февраль, март, апрель Май, июнь Температура воды (в °С) средняя 0 м 0,7 2,5 10,0 12,5 6,3 2,за сезон 20 м 0,8 2,8 7,0 9,0 5,8 2,макси- 0 м 1,5 4,0 15,0 15,0 9,0 3,мальная 20 м 1,0 3,6 10,0 10,0 8,0 3,Начало Массовая вегетация В некоторые годы отмирания весенних диатомей и периди- Массовое отми- осенняя вспышка Массовое развитие Бедный; годоформ и их погружение.





ней; годовой мак- рание весенних размножения диаФитопланктон летних форм на вой минимум Биомасса высокая; к симум биомассы в форм. Появление томей, но общая мелководьях. биомассы.

концу периода глубоководных летних форм. биомасса резко уменьшение.

районах. уменьшается.

Массовое появПериод роста зимне- Период роста летней Массовое появление ление молоди весенней генерации генерации эпишуры.

молоди эпишуры летней генерации Понижение биоэпишуры. К концу В начале периода – Бедный; годозимне-весенней эпишуры. массы. Погружение Зоопланктон периода – начало новой годовой максимум вой минимум генерации. Раз- Появление летних в глубь половспышки размножения. биомассы. К концу биомассы.

множение макро- форм. Годовой возрелых эпишур.

Биомасса периода – понижение гектопуса. максимум увеличивается. биомассы.

биомассы.

Наибольшая Большая часть Рассеивание в толще Наибольшая кон- Рассеивание в Вертикальное Наибольшая кон- концентрация в в глубо-ких вод до глубины 200– центрация в верхних толще вод, опусраспределение центрация в верхних верхних слоях (0– слоях. К концу 300 м, с преобладанием слоях (0–50 м, кание в глубокие зоопланктона слоях (0–50 м) 50 м, особенно 0– перио-да – в верхних слоях. особенно 0–25 м). слои.

25 м). подъем.

Рис. 33. Годовой ход температуры воды в слое 0-50 м на пелагической станции № (Южный Байкал), 1999 год. Биологические сезоны: 1 – ранняя весна (подледный период), 2 – поздняя весна (переходный период), 3 – лето (и раннее, и позднее), 4 – осень, 5 – зима А Б Рис. 34. Динамика биомассы фитопланктона (А) и зоопланктона (Б) в слое 0-50 м на пелагической станции № 1 (Южный Байкал), 1999 год Рассмотрим теперь эти процессы подробнее.

Максимум биомассы фитопланктона, созданный за счет вегетации представителей диатомовых водорослей рода Cyclotella – C. minuta, C. baicalensis и C. baicalensis f. ornata, пришелся на конец июня и составил 650,5 мг м-3. Вегетация динофитовых водорослей происходила в середине июня – второй декаде июля с максимумом биомассы равным 30,9 мг м-3, золотистых – в конце августа – начале сентября с максимумом биомассы в 33,5 мг м-3. В осенне-зимний период произошло резкое снижение биомассы. Годовой минимум биомассы фитопланктона был отмечен в начале декабря и составил 4,3 мг м-3.

(табл. 16, рис. 35).

Таблица Сезонная динамика биомассы фитопланктона в слое 0-50 м на пелагической станции № (Южный Байкал), 1999 год СРЕДНЕВЗВЕШЕННАЯ БИОМАССА (средняя за сезон), мг м-СЕЗОН Ранняя весна 44,7 12,7 1,0 3,5 10,2 16,6 33,Поздняя весна 334,0 284,8 5,1 9,9 19,1 14,5 312,Лето 123,9 72,2 9,0 4,9 19,7 17,7 106,Осень 31,2 17,8 0,9 – 8,6 3,9 28,Зима 7,1 1,9 – – 3,6 1,4 6,Рассмотрим теперь динамику зоопланктона. В 1999 г. присутствовало 15 видов зоопланктона. Это представители отрядов Copepoda (2 вида: Epischura baicalensis и Cyclops kolensis) и Cladocera (2 вида: Bosmina longirostris и Daphnia longispina), класса Rotatoria – 11 видов.

Биологической весной эпишура составляла практически всю биомассу зоопланктона – более 99 % (таблица 17). Первый (весенний) максимум биомассы зоопланктона, равный 283,7 мг м-3, пришелся на начало марта и был обусловлен исключительно развитием эпишуры зимне-весенней генерации.

весь комплекс золотистые диатомовые динофитовые фитопланктон Пикопланктон криптофитовые доминирующий А Б В Рис. 35. Динамика биомасс групп фитопланктона в слое 0-50 м на пелагической станции № 1 (Южный Байкал), 1999 год По оси абсцисс – даты, по оси ординат – биомасса, мг м-3. А: Диатомовые; Б: ––– – синезеленые, – – – – криптофитовые; В: ––– – динофитовые, – – – – золотистые Биологическим летом в связи с прогревом водной толщи совместно с ростом летней генерации эпишуры произошло бурное развитие летних форм: циклопов, кладоцер, некоторых видов коловраток. Годовой максимум биомассы, отмеченный в середине сентября, составил 866,1 мг м-3 (рисунок 36). Доля же эпишуры в биомассе значительно снизилась и составляла в среднем за сезон около 50 % (см. табл. 17).

Рис. 36. Динамика численности Epischura baicalensis в слое 0-50 м на пелагической станции № 1 (Южный Байкал), 1999 год ––––– – общая численность Epischura baicalensis, – – – – численность половозрелых особей, ––– – численность копеподитов (стадии 1-5), – – – –численность науплиусов Таблица Сезонная динамика биомассы зоопланктона в слое 0-50 м на пелагической станции № (Южный Байкал), 1999 год БИОМАССА (средняя за сезон), мг м-СЕЗОН Весь зоопл. Copepoda Cladocera Rotatoria Epischura Ранняя весна 199,8 199,8 – – 199,Поздняя весна 101,8 101,7 – – 101,Лето 466,3 306,5 142,0 17,8 227,Осень 185,3 154,0 28,2 3,1 144,Зима 20,9 20,6 – – 17, Осенью и зимой произошло снижение биомассы за счет отмирания летних форм и опускания в глубинные слои (ниже рассматриваемого трофогенного) эпишуры. В первой декаде декабря наблюдался годовой минимум биомассы, составивший 12,8 мг м-3 (см. рис.

36). Доля эпишуры в биомассе в эти сезоны повышалась, колеблясь зимой в пределах 70 – 96 %.

Рассматривая динамику внутри систематических групп можно отметить следующее.

Из Copepoda эпишура развивается в Байкале круглый год. В 1999 году ранней весной (конец января – начало мая) науплиусы зимне-весенней генерации составили в среднем за сезон 65,5 % от суммарной численности E. baicalensis в верхнем 50-метровом слое воды.

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |   ...   | 14 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.