WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 14 |

ДДТ неожиданно стал долгожданным «чудо-оружием», веществом, чрезвычайно токсичным для насекомых и относительно безвредным для человека и других млекопитающих. Он обладал широким спектром действия, т.е. его можно успешно использовать против очень многих видов насекомых-вредителей. Кроме того, ДДТ оказался стоек, т.е. с трудом разрушался в окружающей среде и обеспечивал продолжительную защиту от вредителей. Это его свойство давало дополнительную экономию, так как отпадала необходимость в затратах труда и материала на неоднократные обработки. Фермеры смогли отказаться от других, более трудоемких методов борьбы, в частности, севооборота и уничтожения остатков прошлогодних культур.

Еще одним положительным качеством ДДТ стала дешевизна его производства. В разгар использования ДДТ в начале 1960-х г. фунт препарата стоил не более 20 центов (Небел, 1993).

В первое время ДДТ был настолько эффективен, что снижение численности вредителей во многих случаях привело к резкому росту урожаев. Стало возможным выращивать менее устойчивые к вредителям, но более урожайные сорта, распространить некоторые культуры в новые климатические зоны, где ранее они были бы погублены насекомыми.

Мало того, из-за широкого спектра инсектицидного действия ДДТ стал эффективным средством борьбы с насекомыми, переносящими инфекции. Во время второй мировой войны его использовали против вшей, распространявших сыпной тиф среди солдат, находившихся в антисанитарных фронтовых условиях. Благодаря ДДТ это была первая из больших войн, в которой от тифа погибло меньше людей, чем от боевых ранений. Всемирная организация здравоохранения распространила ДДТ в тропических странах для борьбы с комарами и достигла заметного сокращения смертности от малярии.

Вне всякого сомнения, ДДТ спас миллионы жизней.

В 1948 г. Пауль Мюллер, вполне заслуженно, получил за свое открытие Нобелевскую премию. В 1970-е г. когда выяснилось, что ДДТ благодаря своей устойчивости быстро накапливается в пищевых цепях и опасен для людей, использование ДДТ было запрещено в большинстве развитых стран. В бывшем СССР ДДТ продолжал использоваться в количествах, официально не превышающих ПДК (для воды/почвы – не более 0,1 мг л–1/кг–1). В настоящее время в биосфере находится ориентировочно 1 Мт ДДТ (Мазур, 1996).

Поступление пестицидов в гидросферу и его последствия Пестициды поступают в водоемы с дождевыми и талыми водами (поверхностный сток), после авиа- и наземной обработки сельскохозяйственных угодий, лесов и водоемов пестицидами, с дренажно-коллекторными водами, образующимися при выращивании хлопка и риса, со сточными водами предприятий, производящими эти вещества. В составе мирового поверхностного стока содержится не менее 2 Мт инсектофунгицидов и других пестицидов органической природы, которыми ежегодно обрабатываются посевы и насаждения сельскохозяйственных культур.

Использование ПХБ в качестве пестицидов обуславливает значительно большее загрязнение ими окружающей среды, чем поступление из других источников. Так, например, доля диоксинов в донных осадках Токийского залива, попавших туда из-за использования пестицидов, оказалась в 5 выше, чем благодаря поступлению из других источников (Masunaga, 2003).

Стойкие пестициды (ДДТ и др.) способны к биоаккумуляции. Как правило, в воде часть их находится в растворенном виде в малых и ультрамалых концентрациях, порядка нг или мкг л–1 воды, но значительно большая их доля адсорбирована на неорганических и органических частицах, на поверхности тел организмов бактерио-, фито- и зоопланктона.

Гидробионты-фильтраторы, поглощая взвеси непосредственно из воды и выедая фито- и бактериопланктон, накапливают пестициды в своих тканях и передают их в последующие звенья трофических цепей – рыбам. При отмирании, планктон оседает на дно и загрязняет донные отложения. Донные отложения служат пищей организмам детритофагам, поедание которых рыбами бентофагами обеспечивает накопление пестицидов уже в их тканях.

Таким образом, происходит загрязнение пестицидами двух основных подсистем водной экосистемы: пастбищной и детритной цепей питания.

Эта вероятность концентрирования веществ в достаточно длинных цепях пресноводной или морской среды представляет наиболее опасное последствие загрязнения вод пестицидами.

В качестве наиболее известного примера потрясений, вызванных заражением вод хлорорганическими инсектицидами можно привести катастрофу на озере Клир-Лейк в Калифорнии. В 1949, 1954, 1957 г. озеро было обработано ТДЕ (соединение типа ДДТ) с целью уничтожения комаров (Chaoborus astictopus). Озеро было обработано относительно слабыми дозами ТДЕ (14 мкг л–1). После распыления препарата его концентрация в планктоне составляла 5 мг кг-1, т.е., в 30 раз выше. В жировой прослойке и мышцах сомика (Ameirus catus), выловленного в 1958 г., содержалось соответственно 1700-2375 (в 1000 – 1500 раз выше, чем в воде) и 22-221 мкг кг-1 этого вещества. Результатом этого стало быстрое уменьшение колонии западных поганок (Aechmophorus occidentalis) – птиц, населяющих это озеро и потребляющих в пищу только рыбу. Из 1000 гнездующихся пар после обработки препаратом осталось лишь 30, и те оказались почти стерильными. В тканях мертвых птиц содержалось до 2500 мг кг–1 ТДЕ, т.е. в 500 раз выше, чем в планктоне и в 15000 раз выше, чем в воде (Рамад, 1981). Другой пример накопления трех разных пестицидов в пищевых цепях оз. Онтарио приведен в таблице 36. В таблице приведены усредненные данные по накоплению ДДТ компонентами озерной экосистемы средних широт.

Понятно, что аккумуляция пестицидов происходит не только в пресноводных экосистемах, но и в океанских. В качестве примера могут служить концентрации трех пестицидов и коэффициенты их накопления в тихоокеанских животных (см. таблицы 38, 39).



Таблица Содержание пестицидов в организмах в озере Онтарио (мкг кг-1 сухого веса/л) (по Allan, 1991) ДДТ Мирекс Линдан Вода 0,3-57 0,1 0,4-Донные осадки 25 000-218 000 144 000 46 Бентос 440 000-1 088 000 41 000-228 000 Планктон 63 000-72 000 12 000 12 Рыбы 620 000-7 700 000 50 000-340 000 2 000-360 Яйца птиц 7 700 000-34 000 000 1 800 000-6 350 000 78 Таблица Биологическое концентрирование ДДТ в пресноводных экосистемах (по Jrgensen, 1992) Компонент Концентрация ДДТ, Коэффициент накопления мг кг–1 сх. в.

Вода 0,000003 Фитопланктон 0,0005 Зоопланктон 0,04 13 Мелкие рыбы 0,5 167 Крупные рыбы 2 667 Рыбоядные птицы 25 8 500 Таблица Средняя концентрация в морской воде и гидробионтах (мкг кг-1) хлорированных углеводородов в Тихом океане (по Израэль, 1989) Объект ПХБ ДДТ Линдан Океанская вода 0,04-0,59 0,006-0,48 0,52-8,Зоопланктон 1,8 1,7 0,Миктофиды24 48 43 2,Кальмары 35-95 16-28 0,93-1,Полосатый дельфин 2800-4100 4200-6000 48-Таблица Коэффициент накопления хлорированных углеводородов в Тихом океане (по Израэль, 1989) Объект ПХБ ДДТ Линдан Зоопланктон 6,4 103 1,2 104 1,2 Миктофиды 1,7 105 3,1 105 Кальмары 2,4 105 1,6 105 5,2 Полосатый дельфин 1,3 107 3,7 107 3,7 Светящийся анчоус Надо отметить, что ПХБ накапливаются и в организмах типичных сухопутных животных (Hoekstra, 2003). Постоянное накопление в воде хлорорганических пестицидов представляет серьезную угрозу для жизни не только животных, но и людей (см. таблицу 40).

Таблица Концентрации ДДТ (мг кг–1 сх. в.) (по Jrgensen, 1992) Объект Концентрация Атмосфера 0,000 Дождевая вода 0,Атмосферная пыль 0,Возделываемые почвы 2,Пресная вода 0,Морская вода 0,Трава 0,Водные макрофиты 0,Фитопланктон 0,Наземные беспозвоночные 4,Водные беспозвоночные 0,Пресноводные птицы 2,Морские птицы 0,Глотатели 2,Травоядные млекопитающие 0,Хищные млекопитающие 1,Человеческая пища, растительная 0,Человеческая пища, животная 0,Человек 6,19.4 CИНТЕТИЧЕСКИЕ ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА Обычные мыла изготавливаются нагреванием сала с каустической содой. Основной активный компонент такого мыла – стеарат натрия:

(СH3–(CH2)16–СO–O)– Na+, легко разлагается в водной среде и представляет опасность для окружающей среды не большую, чем другие легкоокисляемые органические вещества, входящие в состав бытовых сточных вод.

Но с 1950-х г. начали применяться более эффективные синтетические моющие средства (СМС). В таких моющих средствах содержатся активные соединения – сурфактанты (детергенты), обладающие более сильными поверхностно-активными свойствами, чем «натуральное» мыло. Кроме того, СМС или синтетические поверхностноактивные вещества (СПАВ) лучше стирают в жесткой воде, в которой применение обычного мыла, как известно, затруднено.

Обычно такое поверхностно-активное вещество растворено в триполифосфате натрия или в четырехзамещенном трифосфате натрия. Если мыло в воде подвергается полному гидролизу и разлагается до легко усвояемых водной микрофлорой соединений, то СМС обладают многими нежелательными свойствами (вспенивание воды, возникновение кислородного дефицита, токсичность для гидробионтов). Кроме того, входящие в состав СМС фосфатные наполнители вызывают эвтрофирование водоемов. В связи с последней опасностью в настоящее время фосфорсодержащие детергенты в развитых странах заменены сульфатсодержащими веществами, например такими как алкилбензолсульфонат натрия (Эткинс, 1991):

лорилсульфат натрия:

(СH3–(CH2)11–O–SO2–O)– Na+.

Кроме того, они содержат добавочные ингредиенты: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), токсичные для водных организмов.

В настоящее время, СПАВ – одни из самых распространенных химических загрязнителей водоемов. Они поступают в водные объекты в результате их широкомасштабного применения с бытовыми, промышленными и сельскохозяйственными стоками. В сельском хозяйстве поверхностно-активные вещества используются для эмульгирования пестицидов. В подземные воды поверхностно-активные вещества попадают в результате применения почвенных методов очистки сточных вод, при пополнении запасов подземных вод из открытых водоемов и при загрязнении почвы этими веществами.

Среднее потребление детергентов на одного жителя планеты составляет 2,5 г сут-1.

При нормах водоотведения в пределах 125–350 л на человека в сутки среднее расчетное содержание поверхностно-активных веществ в бытовых сточных водах колеблется в пределах 7,1-20 мг л-1.

Кроме описанных выше ионных детергентов, производятся и неионные детергенты.

Примером их может служить полиоксиэтилен (Эткинс, 1991):

СH3–(CH2)11–O–CH2–CH2–OH Их используют, как правило, для эмульгации нефтяных загрязнений больших масштабов.

Поверхностно-активные вещества – «экологически жесткие» вещества. На их окисление расходуется много растворенного кислорода, который, таким образом, отвлекается от процессов биологического окисления. Кроме этого косвенного вреда, детергенты оказывают и прямое токсическое действие на водных животных. Они нарушают функции биологических мембран. Это вызывает жаберные кровотечения и удушье у рыб и беспозвоночных животных. Для теплокровных они усиливают токсическое и канцерогенное влияние других загрязняющих веществ. Как было сказано выше поверхностно-активные вещества бытового назначения – анионные детергенты. Обычно они менее токсичны, чем неионные (см. табл. 40). Последние особенно трудно ассимилируются природной средой и крайне отрицательно влияют на состояние водных экосистем.





Таблица Содержание в воде детергентов, приводящее к 50 %-ной смертности через 48 ч среди типичных морских беспозвоночных, мг л-1 (по Сытник, 1989) Вид Анионные Неионные Полихета Capitella capitata 1,0-10 1,0-5,Полихета Scolepsis fuliginosa 10-25 0,5-5,Креветка Crangon crangon 100 33-Изопода Sphaeroma serratum 800 10-Мидия Mutilus galloprovincialis 800 1,0-Моллюск Cardium edule 10-33 10-*** Рассмотренные материалы свидетельствуют об опасности внесения в гидросферу, несвойственных для нее веществ. Для любого органического вещества, производимого биосферой (даже для бенз(а)пирена и нефтепродуктов) в природе существуют ферменты, способные это вещество разложить до минеральных компонентов. Синтетические же вещества, попав в биосферу, практически не разлагаются ею, и, накапливаясь в пищевых цепях, как и тяжелые металлы, способны представить опасность для здоровья и жизни человека.

20 ПРОБЛЕМА ПОВЫШЕНИЯ КИСЛОТНОСТИ ВОД Закисление окружающей среды накоплением сильных кислот, или веществ, образующих сильные кислоты, оказывает сильнейшее воздействие на химический режим и биоту десятков тысяч озер, рек, водосборных бассейнов в Северной Европе, на северо– востоке Северной Америки, части Восточной Азии и повсюду, хотя и в меньшей степени.

Закисление вод определяется снижением нейтрализационной емкости (acid neutralizing capacity – ANC). Закисленные воды претерпевают химические и биологические изменения, меняется видовая структура биоценозов, снижается биоразнообразие и т.п. Высокая концентрация Н+ ведет к высвобождению из почв металлов, с последующим их транспортом в озера и болота. Высокая концентрация Н+ в водотоках также ведет к высвобождению металлов, в том числе токсичных, из речных осадков.

20.1 ИСТОЧНИКИ И РАСПРОСТРАНЕНИЕ Главными источниками кислотных осадков являются двуокись серы (SO2) и окиси азота (NOx), образующиеся при сжигании угля, нефти, бензина, плавка руд, содержащих серу. В целом поступление SO2 и NOx в атмосферу из антропогенных источников в 2–раза превышает естественное (например, из вулканов, почв, болот, морских вод) (Galloway, 1995).

SO2 и NOx и продукты их окисления, SO42– и NO3–, в среднем, живут в атмосфере 1– 3 дня. При средней скорости переноса 400 км сут–1, они могут быть перенесены на расстояние от 400 до 1200 км. Окислы выпадают в виде дождя, содержащего H2SO4 и HNO3, и сухих осадков в форме аэрозолей, или в виде газов. Измерение сухих осадков достаточно трудно. Так, при измерении баланса хлоридов в Норвегии оказалось, что в вытекающей реке хлоридов на 37 % больше, чем должно было быть по результатам измерения поступлений из атмосферы. Современные оценки доли сухого поступления – от 20 % их количества, до превышения объема жидких осадков (Kalff, 2002). Современная кислотность осадков в Северном полушарии, включая Японию и Южную Корею, увеличилась в 10–30 раз, по сравнению с доиндустриальным уровнем.

В целом, SO2 и NOx составляют примерно половину кислотных техногенных выбросов. На третьем месте следует поставить хлорид–ионы, образуемые промышленностью, особенно мусоросжигающими печами.

Антропогенные выбросы окислов серы и азота Быстрый рост потребления минерального топлива после Второй мировой войны привел к значительному росту выбросов SO2 и NOx в атмосферу. На востоке Северной Америки и в Европе выбросы серы выросли более чем вдвое с 1900 по 1985 г. Контроль выбросов сделал возможным существенное снижение (>40 %) выбросов двуокиси серы к 2000 г. в США, Канаде, Западной Европе, Японии.

Антропогенные выбросы NOx связаны, в первую очередь, с окислением газообразного азота в двигателях внутреннего сгорания, а не с самим топливом. В результате, закисление, вызванное окисями азота, сконцентрировано у мегаполисов.

Масштабы этого загрязнения трудно оценить, поскольку оно связано со множеством мелких источников загрязнения. Тем не менее, выбросы окислов азота только на востоке США выросли в 12–20 раз в 1985 по сравнению с 1900 г. В отличие от окислов серы, эти выбросы не снизились, а продолжают расти (Kalff, 2002).

20.2 ДЕЙСТВИЕ КИСЛОТНЫХ ОСАДКОВ НА ОКРУЖАЮЩУЮ СРЕДУ Чувствительность водоемов к повышению кислотности Внутренние водоемы, особенно чувствительные к повышению кислотности, характеризуются высокой прозрачностью, низкой минерализацией (проводимость ниже 50 мS см–1), относительно низким содержанием гидрокарбонат–ионов, ANC<50 мкэкв л–1.

В Восточной Канаде примерно 350 000 таких озер, из них уже 14 000 закислены (pH < 4,7, ANC < 0 мкэкв л–1). В Швеции примерно 85 000 озер площадью более 1 га, из которых закислены около 20 000 и 90 000 км закисленных водотоков. В Норвегии водоемы и водотоки закислены на площади около 33 000 км2.

При использовании видового состава водорослей в осадках как индикатора кислотности было показано, что большинство озер Адирондэйкских гор (США) в 1900 г.

имели pH около 6,0. Сейчас pH снизился на величину от 1,0 (кислотность возросла в раз) до 2,0 (кислотность возросла в 100 раз) в большинстве озер, при наибольшем росте кислотности между 1920 и 1950 г. (Cumming et al., 1994).

Чувствительность к закислению определяется (Kalff, 2002):

• способностью почв и пород бассейна нейтрализовать поступающие кислоты;

• морфометрией озера и особенностями бассейна;

• содержанием органических кислот в смывах с бассейна;

• нейтрализующими агентами и процессами в водной системе.

Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 14 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.