WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 | 2 || 4 | 5 |   ...   | 11 |

Опыт: К 2 каплям пиридина (хинолин, диметиланилин) приливают 2 мл воды и взбалтывают. Эту смесь добавляют к 1-2 мл конц. раствора гексацианоферрата (II) калия. При подкислении соляной кислотой выпадает осадок кислого гексацианоферрата (II) ариламмония.

г) Реакция с биндоном. Ароматические первичные амины дают с биндоном синее окрашивание, алифатические – фиолетовое. Из веществ, содержащих вторичную аминогруппу, положительную реакцию дают только чисто алифатические и алифатически-ароматические амины.

Опыт: В пробирку наливают 2 мл ледяной уксусной кислоты, добавляют несколько кристаллов биндона и несколько капель раствора амина или его соли. Смесь нагревают в пламени спиртовки и наблюдают появление окраски.

Третичные амины окраску не дают.

д) Реакция с хингидроном. Первичные амины дают пурпурную окраску, вторичные – красную, третичные – оранжево-желтую.

Опыт: К 0.5 мл 5% раствора амина или его соли в 50% спирте добавляют мл 2.5% раствора хингидрона в метиловом спирте.

Через 1-2 минуты разбавляют смесь 2 мл 50% спирта. Наблюдают появление окраски. В случае применения солей аминов окраска появляется после подщелачивания 1-2 каплями 0.1N раствора щелочи.

Нитросоединения а) Восстановление нитросоединений. Все нитросоединения восстанавливаются в первичные амины. Если образуются летучие амины, то их можно обнаружить по изменению окраски индикаторной бумажки:

RNO2 + 6H RNH2 + 2H2O Опыт: Несколько капель нитрометана растворяют в 1-2 мл 30% раствора гидроксида натрия, затем вносят небольшой кусочек цинка и смесь нагревают.

Отмечают характерный запах метиламина и посинение поднесенной к отверстию пробирки влажной лакмусовой бумажки.

б) Реакция с азотистой кислотой – позволяет обнаружить первичные и вторичные нитросоединения. Первичные нитросоединения образуют с азотистой кислотой нитроловые кислоты, щелочные соли которых окрашены в оранжевожелтый цвет:

R-CH2- NO2 + HNO2 R-C- NO2 + H2O NOH R-C-NO2 + NaOH R-C-NO2 + H2O NONa NOH оранжевая окраска Опыт: Несколько капель нитрометана смешивают с 1.5 мл 1N раствора гидроксида натрия. Полученный раствор охлаждают и добавляют 0.5-1 мл 10% раствора азотистой кислоты и затем 5% серной кислоты, по каплям до оранжево-красного окрашивания и последующего его исчезновения. Добавление щелочи вызывает окрашивание.

Вторичные нитросоединения с азотистой кислотой дают так называемые псевдонитролы растворы, которых в органических растворителях имеют бирюзовую окраску:

R2-CHNO2 + HNO2 R2-C-NO2 + H2O NO бирюзовая окраска Опыт: К 10.5 мл 2-нитропропана добавляют 3 мл 2.5% спиртово-водного раствора гидроксида калия и 0.5 г азотистой кислоты, после чего осторожно приливают 20% раствор серной кислоты до появления бирюзового окрашивания.

Для третичных алифатических нитросоединений специфической реакции не имеется.

Ароматические нитросоединения сначала восстанавливаются в ароматические амины, затем их диазотируют и сочетают с -нафтолом.

Контрольное задание (с использованием всей схемы) 1. Получите у преподавателя один из контрольных наборов:

первый набор: фенол, бензальдегид, третичный бутиловый спирт, уксусная кислота, диэтиламин;

второй набор: резорцин, анилин, -нитростирол, масляный альдегид, бензойная кислота;

третий набор: хлорбензол, салициловая кислота, ацетон, N-метиланилин, нитрометан;

четвертый набор: нитробензол, винилацетат, метилэтилкетон, триэтиламин, сульфаниловая кислота.

2. Исследуйте растворимость всех соединений в наборе. Проведите функциональный анализ каждого вещества.

3. На основании полученных данных сделайте вывод, какое вещество находится в каждой пробирке. Если необходимо, подтвердите элементный (наличие азота, серы, галогена) и функциональный состав с помощью качественных реакций.

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ В ОРГАНИЧЕСКОЙ ХИМИИ В настоящее время при изучении органической химии широко используются данные физико-химических методов исследования. Наиболее важными из них являются ультрафиолетовая (УФ), инфракрасная (ИК) спектроскопия и спектроскопия ядерного магнитного резонанса (ЯМР), электронный парамагнитный резонанс (ЭПР), масс-спектрометрия, рефрактометрия. Эти методы с большим успехом используются для контроля чистоты химических соединений, идентификации, установления структуры, исследования различных видов изомерии, количественного анализа смеси, определения констант диссоциации кислот и оснований, исследования кинетики химических реакций и т.д.

Спектральные методы связаны с воздействием на вещество электромагнитного излучения длиной волны от миллиардных долей сантиметра до нескольких метров. Механизм взаимодействия электромагнитного излучения с веществом в разных областях электромагнитного спектра (Табл.1) различен, но в любом случае происходит поглощение молекулой определенного количества энергии (абсорбционная спектроскопия).

Таблица 1. Шкала электромагнитного излучения Электро- магнитное излучение 1198 300 120 10 10-Е, кДж/моль (10) (10-1) (10-3) (<10-6) (Е, эВ) 105 2.5 104 104 102 101 10-, см- 10 100нм 400нм 800нм 300мкм 300мм 200м Энергия уменьшается, длина волны увеличивается Спект- Мягкое Ультрафио- Короткие ральная область рентге- Видимая Инфракрас Микро- летовая радио-вол новское ная (ИК) волновая (УФ) ны излучение Причина Переходы Колебатель- Враща- Спиновые поглощения, внутрен- Переходы ные пере- тельные переходы излучения них элек- валентных ходы моле- перехо- ядер и тронов в электронов кул ды моле- электро- атомах кул нов Наблюдае- УФ - спектр ИК спектр ЯМР, мый спектр ЭПР поглощения Электронные спектры спектр При действии электромагнитного излучения на молекулярную систему происходит взаимодействие излучения с молекулами, которое количественно выражается в неодинаковом ослаблении интенсивности пропущенного веществом излучения в разных участках электромагнитного спектра. Исследование такого взаимодействия является предметом спектроскопии.



Способность поглощать электромагнитное излучение является общим свойством всех молекул. Область поглощения называется полосой. Совокупность полос поглощения данной молекулы называется спектром поглощения, который является характерным для нее и точно не воспроизводится никакими другими молекулами, даже очень сходного строения.

В общем случае для получения спектра поглощения образец вещества помещают между источником и приемником электромагнитного излучения (рис. 4):

4 Рис.4. Общая схема получения УФ-, ИК-, ЯМР-спектров:1) источник излучения с непрерывным спектром; 2) кюветное отделение; 3) монохроматор; 4) приемник; 5) регистрирующее устройство (самописец) Приемник (4) измеряет интенсивность прошедшего через образец (2) излучения в сравнении с первоначальной интенсивностью, преобразует световую энергию в электрические сигналы, поступающие на регистрирующее устройство (5) с помощью которого производится запись сигналов в виде спектра исследуемого соединения.

ЭЛЕКТРОННЫЕ СПЕКТРЫ В данном разделе будет рассмотрена спектроскопия в УФ, видимой и ИК областях, охватывающих лишь небольшую часть электромагнитного излучения. Природа УФ и ИК спектров одинакова: энергия излучения, которую поглощает раствор вещества расходуется на возбуждение валентных электронов и перехода их в возбужденное состояние. Поэтому спектры в этих областях поглощения часто объединяют под названием «электронные спектры поглощения». Энергия перехода (Е) между двумя энергетическими уровнями в системе и длина волны поглощаемого света () связаны соотношением Планка Е = Е2 - Е1 = hc/ где с- скорость света, h - постоянная Планка.

Энергию перехода можно выразить в калориях, джоулях (1 кал = 4,19 Дж ) или электроновольтах, которые связаны с длиной волны и волновым числом следующими соотношениями :

(нм) = 107 / ( см -1 ) = 28.591/Е (ккал / моль ) = 1239,8 / Е ( эВ ) или Е (ккал/моль ) = 23,0609 Е (эВ) = 0,02859 (см -1 ) = 28591 ( нм ) Полная энергия молекулы может быть представлена в виде суммы электронной Е эл, колебательной Е кол и вращательной Е вращ энергий:

Е = Е эл + Е кол + Е вращ Все три вида энергий занимают определенное положение. На основании экспериментальных данных установлено, что электронная, колебательная и вращательная энергии существенно отличаются по величине:

Е эл Е кол Е вращ и поэтому располагаются в различных спектральных областях (табл. 1). Такое различие делается по чисто физиологическим причинам: видимая область воспринимается человеческим глазом, ультрафиолетовая и инфракрасная нет.

Человеческий глаз имеет очень небольшую чувствительность и различает только часть электромагнитного спектра, так называемую видимую область, длины волн которой лежат между 400-800 нм. В сторону более коротких волн (~50-100 нм) распространяется УФ область, а далее рентгеновское и -излучение. В сторону более длинных (~300 мкм до 300 мм) ИК область, затем радиоволны (табл. 1).

При действии на молекулу малых энергий (порядка сотен джоулей) она переходит в возбужденное вращательное состояние, а колебательное и тем более электронное состояние не изменяется. Такой энергии соответствуют излучаемые (поглощаемые) длины волн 1.0-0.1 мм или частоты (волновые числа) 10-100 см-1. Чисто вращательный спектр попадает таким образом в далекую ИК область.

При дальнейшем увеличении энергии электромагнитного излучения возбуждаются и колебательные переходы, им соответствуют длины волн 2.5-мкм, или частоты 100-4000 см-1. Вместе с колебаниями возбуждаются и вращения, поэтому наблюдается не чисто колебательный, а колебательно-вращательный спектр. Он лежит в ИК области, более близкой к видимой. Для возбуждения электронов нужны, как правило, гораздо большие энергии (сотни кДж), соответствующие частоты лежат поэтому в видимой и УФ области спектра (100-800 нм). При поглощении такой энергии одновременно происходят изменения в колебательных и вращательных состояниях.

Таким образом, электронные спектры поглощения охватывают область от -1 -~105 см (100 нм) до ~102 см (300 мкм), которая подразделяется на УФ (с интервалом от 100 до 400 нм), видимую (от 400 до 800 нм) и ИК- (от 800 нм до 300 мкм).

УФ СПЕКТРОСКОПИЯ При работе в УФ области в качестве источника света используется водородная лампа и пропускающая эти лучи кварцевая оптика. Запись УФ спектра производится для разбавленного раствора образца в кварцевых кюветах на 1-мм. Подобные кюветы из стекла применяют для записи спектров в видимой области света.

В УФ и видимой области спектра в качестве единицы длины волны наиболее часто используют нанометр (1 нм = 10-9 м).

Спектроскопия в УФ и видимой областях изучает переходы между молекулярными уровнями, образованными электронами валентных оболочек атомов в молекулах. Энергия таких переходов составляет 120-1198 кДж/моль (1.77-6.эВ), что соответствует =100-800 нм или =16000-50 000 см-1. Ультрафиолетовая область электромагнитного излучения делится на две части: на ближнюю от 200 до 400 нм и дальнюю (или «вакуумную»), от 100 до 200 нм. Термин «вакуумная» применяют в связи с тем, что воздух имеет полосы поглощения, лежащие в данной области, и поэтому для их исследования необходимо применять вакуумные спектрометры. Обычные лабораторные спектрометры измеряют поглощение в диапазоне 200-800 нм.





Таким образом, возникновение УФ спектра связано с поглощением света органическими соединениями в ближней (200-400 нм) и видимой (400-800 нм) областях (табл. 1). Неокрашенные вещества поглощают излучение в УФ области спектра, а окрашенные соединения в видимой части спектра. УФ спектр представляет собой график и записывается в виде зависимости интенсивности поглощения () (или ее логарифма lg) от длины волны (). По оси абсцисс которого откладывается длина волны (, нм) или волновое число (, см-1), а по ординате – интенсивность поглощения () (или оптическая плотность D,%).

Полосы УФ поглощения обычно очень широкие, т.к. каждому энергетическому уровню отвечают многочисленные подуровни, связанные с колебанием молекулы. Электронные спектры, обычно состоят из нескольких широких полос (и не имеют узких пиков) в виде непрерывной кривой.

Таблица 2. Границы пропускания растворителей, используемых в УФ спектроскопии, при толщине слоя 1 см.

, нм 240 260 280 300 320 180 220 Вода Ацетонитрил Спирты Эфир Диоксан Дихлорэтан Хлористый метилен Хлороформ ТГФ Этилацетат Четыреххлористый углерод ДМСО ДМФА Бензол Толуол Бензонитрил Пиридин Ацетон Нитрометан 200 220, нм 240 260 280 Электронные спектры снимают в любых растворителях. Чаще всего используют 95% этиловый спирт, прозрачный до 205 нм. Полярные растворители стирают тонкую структуру линий поглощения. Этого можно избежать, если использовать в качестве растворителя насыщенные углеводороды (например, циклогексан), которые позволяют расширить диапазон измерений до 190 нм. Используемый растворитель подбирают так, чтобы он не закрывал нужную область (табл. 2). Раствор исследуемого вещества растворяют в подобранном растворителе, помещают в кювету, пропускают через него электромагнитное излучение и получают спектр исследуемого соединения.

Большой экспериментальный материал показывает, что появление поглощения в области 200-800 нм связано с наличием в органических молекулах кратных связей или функциональных групп, имеющих неподеленные пары электронов.

Длина волны, на которой происходит поглощение света веществом, зависит от наличия в нем определенных двойных связей и от их числа. Группы атомов, вызывающие поглощение в УФ и видимой областях спектра получили название хромофорных; они содержат кратные связи или атом со свободной парой электронов (С=О, NO, N=N).

Классификация электронных переходов Появление в спектре полос поглощения определяется тремя основными элементами: С-С одинарной связью, С=С двойной связью и свободной парой электронов. Характер УФ спектра зависит не только от наличия этих структурных элементов, но и от их взаимного расположения. При поглощении света валентные электроны исследуемой молекулы возбуждаются и переходят из основ Е *МО * МО * * * * Е n AО МО МО Рис.5. Типы электронных переходов при поглощении света ного в возбужденное состояние. Упрощенно это можно представить как перемещение электронов со связывающих -, - и несвязывающих nмолекулярных орбиталей (МО) на разрыхляющие *, * МО. Возможны четыре типа электронных переходов: *, n *, n*, * (рис. 5).

Электроны на несвязывающих МО не участвуют в образовании связей, поэтому соответствующих им разрыхляющих орбиталей не существует. Переход nn n электронов при поглощении света может происходить на *- и * МО. Поглощение света молекулой осуществляется избирательно: поглощаются те кванты света, энергия которых равна разности энергий ( Е) между орбиталями основного и возбужденного состояний. Чем меньше эта разность, тем больших длин волн поглощается свет (рис. 6). Наибольшая энергия требуется для осуществления * электронного перехода. Поэтому соединения, у которых имеются только -связи (С-С), например алканы и циклоалканы поглощают в области длин волн менее 170 нм. Характеристические полосы для них появляются в «вакууме» УФ области (т.е. при 200 нм). Следует отметить, что они не поглощают свет в рабочем интервале серийных УФ спектрометров (200-800 нм). В связи с этим они могут использоваться в качестве растворителей при снятии УФ спектров других соединений.

max ВПЗ n n max 400 100 длина волны увеличивается, энергия уменьшается Рис.6. Положение и интенсивность полос поглощения различных типов электронных переходов в УФ-спектрах.

Значительно меньшей энергии требуют * переходы, которые характерны для ненасыщенных соединений и лежат в видимой и ближней (200-нм) УФ областях. Переходы n*, n* осуществляются с атомных орбиталей основного состояния на МО *- и *. Переход n* характерен для кислород, азот, серо- и галогенсодержащих соединений, проявляющийся в ближней УФ области (~200-250 нм). Переход n* является запрещённым, если электроны находятся на чистой р-орбитали, поэтому его интенсивность всегда мала (характерен для карбонильных соединений). Обычно n-уровни лежат выше -орбитали, поэтому полоса n* является наиболее длинноволновой в спектре поглощения (требует наименьшей энергии, рис. 6).

Следует отметить, что способность поглощать свет представляет собой суммарное свойство всех связей молекулы в целом. Однако некоторые полосы поглощения в УФ спектре можно отнести к электронным переходам в отдельных структурных фрагментах молекулы (хромофорах). В таких группах, кроме * * * * *, возможны еще два: * и n*. Если * переход в изолированных хромофорах всегда находится в дальней УФ области ( 200 нм), то n* переход уже проявляется в ближней УФ области и может быть использован в практических целях т.к. увеличивается не только длина волны, но и ее интенсивность.

Pages:     | 1 | 2 || 4 | 5 |   ...   | 11 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.