WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 15 | 16 || 18 | 19 |   ...   | 21 |

Опыт 6. Разделение аминокислот методом радикальной (круговой) распределительной хроматографии на бумаге Для работы получают смесь аминокислот (неизвестных) и набор известных аминокислот (свидетелей). Перед началом работы необходимо вымыть руки с мылом, чтобы на хроматографической бумаге при опрыскивании раствором нингидрина не проявлялись пятна от рук. Бумагу для хроматографии можно брать и держать лишь кусочками фильтровальной бумаги. Прибор для радикальной хроматографии и вид хроматограммы представлены на рис. 18. Из хроматографической бумаги вырезают круг, диаметр которого на 1.5 см больше диаметра чашки Петри, что способствует плотному прижатию к краям чашки и более равномерному радикальному распространению растворителя. Из центра его циркулем проводят окружность диаметром 1.5-2 см. На окружность на расстоянии 1.5-2 см друг от друга наносят капли (диаметром 2-3 мм) растворов известных аминокислот «свидетелей» и а б исследуемой смеси. Для каждого раств вора должен быть отдельный капилляр.

Затем хроматограмму слегка подсушивают и снова наносят капли всех растворов в те же точки. Эту операцию пов2.

1.

торяют 3-4 раза. После приготовления хроматограммы ее подсушивают. В сереРис. 18. 1. а) хроматографическая бумага, б) линия старта, в) точки аминокис- дине круга делают отверстие, куда вставлот, 2. чашка Петри с помещённой в неё ляют фитиль из фильтровальной бумаги.

хроматограммой.

Конец фитиля должен касаться растворителя, налитого в чашку Петри. Хроматограмму помещают на чашку Петри, содержащую растворитель (н-бутиловый спирт, вода и ледяная уксусная кислота в отношении 4:5:1). Хроматограмму вынимают из прибора раньше, чем растворитель приблизится к краям круга (на 0.5-1 см). Хроматограмму высушивают и опрыскивают из пульвилизатора раствором нингидрина. При этом он должен лишь смачивать хроматограмму. Затем её высушивают теплым воздухом – в термостате или над электроплиткой;

необходимо следить, чтобы бумага не перегрелась и не обуглилась. После высушивания на бумаге проявляются пятна аминокислот, окрашенные в лиловорозовый цвет. Для закрепления пятен на бумаге хроматограмму смачивают раствором сульфата никеля. Качественный состав смеси устанавливают сравнением Rf компонентов смеси с Rf «свидетелей», вычисленных для данной хроматограммы по формуле:

расстояние от линии старта до середины пятна вещества Rf =расстояние, пройденное растворителем от старта до фронта растворителя Лабораторная работа № 21. Свойства моносахаридов Оборудование: фильтровальная бумага, аппарат Киппа, фарфоровые ступки с пестиками, водяная баня.

Реактивы: бромная вода; гидроксид натрия (10%), известковое молоко, сульфат меди (5%), реактив Фелинга (раствор А: сульфат меди в водном растворе (3,5 г CuSO4 5H2O в 50 мл, раствор Б: виннокислый калий-натрий в водно-щелочном растворе (17,3 г сегнетовой соли и 6 г едкого натра в 50 мл), реактив Селиванова (раст вор 0,01г резорцина в смеси с 10 мл воды и 10 мл концентрированной соляной кислоты; применяют свежеприготовленным), нитрат серебра (раствор), аммиак (раствор), хлорид железа (III); кислоты: соляная (1:1), уксусная (конц); спирт:серная кислота (смесь 4:1); углеводы: глюкоза (крист, 20%, 2%, 1%), галактоза (крист, 1%), фруктоза (крист, 1%, 2%), сахароза (крист, 1%, 2%), мальтоза (крист, 2%), лактоза (крист), арабиноза (крист); солянокислый фенилгидразин (крист), ацетат натрия (крист), нафтол (5% спиртовой), анилин (конц.), фенол.

Опыт 1. Реакции на гидроксильные группы в моносахаридах А. Реакция с щелочным раствором меди. Опыт проводят одновременно с различными сахарами, растворяя 0.05-0.1 г каждого из них в 2-3 мл воды.

К 2-3мл раствора сахара добавляют 1 мл разбавленного раствора щелочи и 2-3 капли раствора сульфата меди. Выделяющийся осадок гидроокиси меди при встряхивании растворяется, жидкость окрашивается в интенсивно синий цвет.

Затем осторожно нагревают в пламени верхнюю часть жидкости до начала кипения. Если сахар окисляется, то синяя окраска раствора при нагревании переходит в зеленую и затем исчезает. Одновременно появляется желтый, красный или коричневый осадок. Эта реакция является доказательством наличия нескольких гидроксильных групп и характерна для многоатомных спиртов.

Запишите наблюдаемые изменения для всех исследуемых моноз. Для одной из них запишите качественную реакцию.

Б. Реакция с гидроксидом кальция. К 2мл 20% раствора глюкозы прибавляют по каплям при встряхивании известковое молочко. Гидроксид кальция растворяется, образуя сахарат кальция. Прибавляют избыток взмученного известкового молока, при этом в пробирке должен быть осадок не исчезающий при встряхивании. Через 5 минут отфильтровывают 1 мл раствора и через прозрачный фильтрат пропускают медленно ток СО2 из аппарата Киппа. Выделяется осадок карбоната кальция. При длительном пропускании СО2 осадок может раствориться (образуется гидрокарбонат кальция).

Напишите уравнения реакции образования сахарата кальция и взаимодействия его с оксидом углерода.

Опыт 2. Реакции на карбонильные группы в моносахаридах А. Окисление моносахаридов гидроксидом меди (II) в щелочной среде.

В пробирке смешивают 3 мл 1% раствора глюкозы и 1.5 мл 10% раствора гидроксида кальция. Затем по каплям при встряхивании прибавляют 5% раствор сульфата меди до появления не исчезающей при встряхивании мути. Избыток гидроксида меди мешает реакции, т.к. превращается в оксид меди (II) черного цвета. Содержимое пробирки подогревают до начала кипения так, чтобы нагревалась лишь верхняя часть раствора, а нижняя оставалась для контроля. В нагретой части раствора появляется желтый осадок гидроксида меди (I), вскоре переходящий в красный осадок оксида меди (I). Опыт повторяют, но вместо раствора глюкозы берут 1% раствор фруктозы.



Эта реакция объясняется превращением циклической формы углевода в открытую форму при растворении. Напишите уравнения реакции образования глюконовой кислоты.

Б. Окисление раствором Фелинга. Опыт проводят одновременно с растворами различных сахаров.

Точно отмеряют и смешивают равные объёмы растворов А и Б и наливают в пробирки по 2 мл полученной темно-синей жидкости. Число пробирок соответствует числу исследуемых растворов сахаров. Нагревают жидкость в каждой пробирке до начала кипения и добавляют к ней по каплям (при продолжающемся кипячении) 0.5-1.5 мл исследуемого раствора сахара до полного исчезновения синей окраски смеси и выделения красного осадка окиси одновалентной меди. Приливая раствор сахара из градуированной пипетки или бюретки, можно во многих случаях оценить его концентрацию.

В. Окисление аммиачным раствором окиси серебра. Аммиачный раствор окиси серебра готовят, добавляя к 1-2%-ному раствору нитрата серебра по каплям водный аммиак до растворения первоначально образующегося осадка; к полученной жидкости добавляют 1/10 её объёма разбавленного раствора едкого натра. Реактив следует готовить только в нужном количестве перед занятием.

В тщательно вымытой горячим раствором щелочи и ополоснутой водой пробирке смешивают 1 мл аммиачного раствора серебра, 1 мл раствора сахара и пробирку помещают на несколько минут в горячую (60-80оС) воду. Если пробирка была чистой, то выделяющееся при окислении сахара металлическое серебро осаждается на стенках в виде зеркального слоя; в ином случае выпадает черный осадок. Уравнение окисления исследуемого сахара запишите Г. Окисление бромной водой. Опыт проводят одновременно с раствором глюкозы и фруктозы. К 1 мл каждого раствора сахара добавляют по 6 мл бромной воды и смесь нагревают на кипящей водяной бане 15 мин. Если за это время окраска не исчезнет, то кипятят жидкость 0.5-1 мин на пламени до полного обесцвечивания.

Охладив оба полученных раствора в воде до комнатной температуры, добавляют к каждому из них по несколько капель раствора хлорного железа и сравнивают появившуюся в них окраску. Напишите уравнения окисления глюкозы и фруктозы бромной водой.

Д. Реакция замещения карбонильного кислорода в моносахаридах (получение озазонов). Перед опытом смешивают 2 весовые части солянокислого фенилгидразина с 3 весовыми частями ацетата натрия и хорошо растирают в ступке.

Растворяют около 0.2 г глюкозы в 4 мл дистиллированной воды, добавляют около 1 г приготовленной смеси солей и нагревают 5-10 мин на кипящей водяной бане при частом встряхивании. Когда появятся желтые кристаллы озазона, ставят пробирку в штатив и дают ей медленно остыть. Постепенно образуются красивые желтые иглы озазона глюкозы. Уравнения реакции запишите.

Опыт 2. Цветные реакции на моносахариды А. Реакция Селиванова на кетогексозы. Опыт проводят одновременно с растворами различных сахаров. В пробирки помещают по 0.5-1 мл каждого из исследуемых растворов сахаров и добавляют 2 мл реактива Селиванова, после чего погружают все пробирки на 2 мин в кипящую водяную баню.

Растворы некоторых сахаров быстро окрашиваются в ярко-красный цвет.

При последующем нагревании их на пламени горелки до начала кипения красные растворы мутнеют и выделяют окрашенный осадок. Растворы других сахаров в этих условиях лишь слегка желтеют или розовеют. Объясните причину наблюдаемых явлений.

Б. Реакция Панова на фруктозу. Опыт проводят параллельно с растворами фруктозы и глюкозы.

В две пробирки наливают по 0,5 мл 2%-ных растворов моноз и по 5 мл смеси спирта с конц. серной кислотой (в соотношении 4:1 при охлаждении). Затем в пробирки прибавить по 2-3 капли 5%-ного спиртового раствора -нафтола.

Жидкость перемешивают и нагревают на кипящей водяной бане 5-8 мин.

В пробирке с фруктозой появляется интенсивное фиолетовое окрашивание.

Глюкоза в условиях опыта окрашивания не дает. Объясните причину наблюдаемых явлений.

Г. Реакции на пентозы с уксуснокислым анилином. В пробирку помещают несколько крупинок арабинозы (или другой пентозы) и прибавляют 2 мл раствора соляной кислоты (1:1). На полоску фильтровальной бумаги наносят 1-капли анилина и 1-2 капли уксусной кислоты. Затем бумажку подносят к отверстию пробирки со смесью арабинозы с соляной кислотой и кипятят реакционную смесь. Через 1-2 минуты на бумаге появляется ярко-красное окрашивание.

При нагревании пентоз с соляной кислотой происходит их дегидратация и образование фурфурола, который конденсируясь с анилином образует окрашенное соединение. Напишите уравнения реакций образования фурфурола.

VIII. Глоссарий Антиподы (энантиомеры) – оптические (зеркальные) изомеры, обладающие одинаковыми физическими и химическими свойствами, но отличающиеся знаком вращения (противополжные по значению + или –) плоскости поляризованного света.

Аномерный эффект – аномальное преобладание циклической -формы гексоз.

Ароматические соединения – органические соединения, подчиняющиеся правилам ароматичности.

Атропоизомерия – пространственная изомерия, вызванная отсутствием свободного вращения вокруг одинарной связи.

Водородная связь – связь между атомом водорода и другими электроотрицательными атомами (кислород, азот, галоген).

Гетеролиз – неравномерный разрыв ковалентной связи (характерен для ионных реакций).





Гибридизация – выравнивание электронных облаков по форме и энергии.

Гибридизация определяет геометрию молекулы.

Гомолиз – равномерный разрыв ковалентной связи (характерен для радикальных реакций).

Гомологи – соединения сходные по химическим свойствам и отличающиеся друг от друга на СН2 группу (гомологическую разность). Гомологи, расположенные в порядке возрастания их относительной молекулярной массы, образуют гомологические ряды. Состав членов гомологического ряда может быть выражен общей формулой и наличием функциональной группы.

Диастереомеры – устойчивые, изолируемые в индивидуальном состоянии пространственные изомеры, различающиеся физическими (а в какой-то мере и химическими) свойствами.

Изомеры – соединения имеющие одинаковый состав и молекулярную массу, но различное строение, а следовательно различные физические и химические свойства. Изомерия может быть обусловлена изменением структуры углеродного скелета (структурная) или пространственным строением (стереоизомерия).

Индуктивный эффект – смещение электронной плотности к наиболее электроотрицательному атому вдоль сигма связи.

Инверсия цикла (конверсия) – переход конформации кресла I циклогексанового кольца через ряд последовательных стадий в конформацию кресла II, при этом все аксиальные заместители становятся экваториальными и наоборот.

Процесс инверсии осуществляется при 25оС с частотой 100 000 превращений в секунду.

Инверсный сахар – изменение значения и знака угла вращения плоскости поляризованного света сахарозы после её гидролиза.

Интермедиат (промежуточное соединение) – соединение, образующееся на промежуточной стадии (в определённых условиях оно может быть выделено в индивидуальном виде).

Ионная связь (электровалентная, гетропполярная) – обусловлена образованием общих электронных пар за счёт перехода валентных электронов от одного атома к другому.

Ковалентная связь (гомеополярная) – обусловлена обобщением неспаренных валентных электронов с противоположными спинами.

Контроль за ходом реакции – зависимость соотношения альтернирующих (конкурирующих) продуктов от кинетических (кинетический контроль) или термодинамических (термодинамический контроль) факторов.

кинетический контроль соотношение альтернирующих продуктов определяется скоростью их образования, термодинамический контроль – соотношение альтернирующих продуктов определяется их термодинамической устойчивостью.

Крекинг – высокотемпературный разрыв С-С связи в молекулах алканов с длинными цепями и образование менее крупных молекул углеводородов.

Кинетический контроль – см. контроль за ходом реакции.

Конфигурация – закреплённое (кратная связь, цикл) расположение атомов в пространстве без учёта различий, возникающих вследствие вращения вокруг одинарных связей. Как правило, конфигурации имеют большую энергию активации и не могут самопроизвольно (при нормальных условиях) переходить друг в друга. Поэтому конфигурационные изомеры можно выделить в индивидуальном виде, например, цис- и транс- изомеры малеиновой кислоты.

Конформация – одна из многочисленных пространственных (геометрических) форм, которую молекула может принимать в результате вращения вокруг простых (одинарных) связей и других внутримолекулярных движений, проходящих без нарушения целостности молекулы, т.е. без разрыва химических связей. Как правило, конформации имеют небольшую энергию активации и самопроизвольно (при нормальных условиях) переходят друг в друга. По этой причине конформация не может быть выделена в индивидуальном состоянии.

Конформации молекулы называют поворотными изомерами.

Механизм реакции – способ нарушения ковалентной связи как совокупность последовательно осуществляющихся стадий, через которые проходит система «реагент-субстрат», превращаясь в продукты реакции.

Мезомерный эффект – передача электронного влияния заместителя (Х) по сопряжённой системе СН2=СН-Х. При этом заместитель (Х) является участником сопряжённой системы.

Механизм образования ковалентной связи – способ образования химической связи (общей пары электронов); различают донорно-акцепторный и обменный механизмы.

Донорно-акцепторный механизм – для образования химической связи один из взаимодействующих атомов предоставляет пару электронов (донор), а другой – свободную орбиталь (акцептор).

Обменный механизм– для образования химической связи каждый из взаимодействующих атомов предоставляет по одному электрону.

Мутаратация – взаимное превращение циклических - и -форм углеводов через раскрытие цикла.

Напряжение цикла – термодинамическая характеристика устойчивости цикла; возникает в результате отклонения от стандартных характеристик ковалентной связи и приводит к его меньшей устойчивости. Различают несколько видов напряжения в цикле:

Байеровское (угловое) – возникает из-за отклонения от стандартного валентного угла (109о28`); характерно для малых циклов, Питцеровское (торсионное) – возникает вследствие энергетически невыгодной заслонённой конформации двух связанных друг с другом атомов (например, в молекуле циклопропана, в конформации ванна циклогексанового кольца); наиболее характерно для объёмных заместителей, Прелоговское (трансаннулярное) – возникает при взаимодействии в пространстве двух и более атомов водорода при атомах углерода на противополжных концах средних циклов (С8-С11); является причиной трансаннулярных реакций.

Насыщенные (предельные) углеводороды – см. угеводороды.

Ненасыщенные (непредельные) углеводороды – см. углеводороды.

Pages:     | 1 |   ...   | 15 | 16 || 18 | 19 |   ...   | 21 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.