WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 23 | 24 || 26 | 27 |   ...   | 31 |

Растворы на нефтяной основе создают дополнительные проблемы, так как экологические ограничения не допускают сброса шлама с нефтью. Перед сбросом содержание нефти снижается до разрешенного уровня. Установка утилизации позволяет производить эффективную обработку наработанного раствора, нефтесодержащего шлама и других загрязненных продуктов бурения. Исключение использования нефти в качестве смазывающей добавки позволяет уменьшить отрицательные воздействие отходов бурения на окружающую среду. После очистки экологически безопасные сухие материалы могут быть захоронены на площадке, использованы в качестве подсыпки или вывезены на специальное место (Шеметов, 1997).

Наиболее рациональным и экологически оправданным направлением утилизации сточных вод является переход на полностью или частично замкнутый цикл водообеспечения буровой. Его основу составляет максимально возможное вовлечение буровых сточных вод (БСВ) в систему оборотного водоснабжения с ориентацией на их использование для технических нужд бурения. Основными направлениями утилизации БСВ в оборотном водоснабжении буровой являются:

– обмыв механизмов системы очистки и регенерации буровых растворов;

– обмыв бурильного инструмента при выполнении спускоподъемных операций;

– обмыв оборудования и рабочих площадок буровой, насосной и желобной систем;

– охлаждение штоков буровых насосов;

– приготовление химреагентов и бурового раствора;

– приготовление тампонажных растворов и буферных жидкостей при цементировании скважин;

– опрессовка обсадных труб.

Основным направлением утилизации отработанного бурового раствора (ОБР) остается их повторное использование для бурения новых скважин. В этой области сконцентрированы усилия многих зарубежных фирм. Такой подход оправдан не только с экологических, но и с экономических позиций, так как обеспечивает значительное сокращение затрат на приготовление буровых растворов.

При работе по традиционной амбарной технологии, с целью сбора отходов рядом с буровой установкой роются или насыпаются отстойные котлованы (амбары) объемом от 1 000 до 5 000 м3 в зависимости от количества скважин в кусте, глубин и продолжительности бурения скважин. Эти амбары занимают площади до 2 500 м2 только для одной буровой установки.

Как правило, строительство котлованов, а затем их рекультивация сопряжены с большими сложностями:

– отсутствие, либо отдаленность строительного материала (песка) при строительстве в тундре и болотистых местностях;

– негерметичность котлованов;

– значительные затраты по устройству и рекультивации амбаров. Кроме того, наносится невосполнимый ущерб природе за счет отторжения земель, разработки карьеров и других мероприятий. Также существуют месторождения, которые находятся в природоохранных зонах, где бурение по амбарной технологии просто запрещено.

Реализация идеи безамбарного бурения в Тюмени началась 1991 году, когда английская фирма «Стримлайн» первой стала поставлять оборудование для систем базамбарного бурения, в частности блоки флокуляционной очистки раствора (блоки ФСУ). Первые блоки были поставлены и введены в эксплуатацию в Мегионнефтегазе, Юганскнефтегазе. В настоящее время эти системы эксплуатируются собственными силами буровых организаций. В 1993 году в г. Усинске (Республика Коми) фирма «Стримлайн» создала совместное предприятие «Экоарктика» с целью внедрения безамбарного бурения при строительстве скважин на месторождениях объединения «Коминефть».

За прошедший период с использованием оборудования, реагентов и инженеров обеих фирм пробурено более 80 скважин на различных месторождениях, в том числе более 50 скважин по безамбарной технологии. Предоставлены услуги многим нефтяным компаниям, работающим в Тюмени и на Европейском севере России, в частности: «Ватойл», «Стримлайн», «КомиарктикОйл», «Северная нефть», «Полярное сияние», «Тоталь», «Коми-ТЭК», «Байтек Силур», «Нобель Ойл» и др.

Схема циркуляции раствора системы безамбарного бурения может быть адаптирована к буровой установке, например, к установке Уралмаш-43, как показано на рисунке 10.1.3 (Михелик, 1999).

Из скважины неочищенный буровой раствор поступает на вибросита, где осуществляется первая ступень очистки бурового раствора от шлама. С вибросит шлам попадает в отдельную емкость-накопитель шлама.

ШЛАМ ВОДА ЦФ ФЦУ Рис. 10.3.1. Схема циркуляции раствора системы безамбарного бурения Для второй степени очистки раствор после первой обработки (очистки) на виброситах подается на гидроциклон. Шлам направляется в накопитель. Оставшийся раствор может идти по желобам в рабочую емкость, либо же для обработки на третьей стадии очистки через центрифуги (ЦФ). После очистки на ЦФ раствор идет в рабочие емкости, а шлам – в накопитель.

Для полной очистки воды от химических примесей применяется блок флокулянтной очистки (ФCУ). После блока ФCУ очищенная вода снова идет на приготовление буровых растворов, либо закачивается в сбросовые (нагнетательные) скважины. Возможен после соответствующей обработки и согласования в природоохранных органах слив на рельеф или сброс в водоем.

Технический контроль заключается в предупредительном ремонте в режиме постоянного контроля в соответствии с отраслевыми регламентами ведения работ. Экологический контроль осуществляется методами биологической индикации и тестирования продуктов очистки.

Имеется только одно место сбора шлама – металлический шламосборник, куда выведены лотки сброса шлама от вибросит, гидроциклонного пескоотделителя и центрифуги. При наличии разрешения шлам может быть использован для отсыпки дорог и развития площадки в смеси с песком.



Вода после обезвоживания раствора используется для приготовления и обработки раствора, а также для приготовления растворов флокулянта и коагулянта. Вода, которая остается после окончания бурения, может быть использована для бурения последующих скважин, закачана в сбросовые скважины, или после соответствующей обработки и получения разрешения природоохранных органов слива на рельеф.

По мере приобретения опыта работы специалисты пришли к выводу, что наиболее эффективно реализовать технологию безамбарного бурения можно только в комплексе, в котором звеньями одной цепи являются следующие стадии: 1) проектирование систем буровых растворов и схем расположения оборудования для безамбарного бурения; 2) приготовление и обработка буровых растворов; 3) инженерное обеспечение работы оборудования по контролю содержания твердой фазы и обезвоживанию.

Применение безамбарной технологии бурения позволяет решить как экологические, так и технологические проблемы:

– отказаться от строительства амбаров для сбора отходов бурения;

– исключить сброс жидких отходов на рельеф;

– сократить потребление технической воды за счет оборотного водоснабжения (используется вода после обезвоживания раствора через флокуляционную установку и центрифугу);

– за счет эффективного регулирования состава твердой фазы улучшить качество буровых растворов и снизить затраты на их приготовление и обработку;

– улучшить отработку долот и соответственно сократить сроки строительства скважин;

– улучшить вскрытие продуктивного пласта за счет низкого содержания твердой фазы;

– отказаться от применения в качестве смазочной добавки нефти.

Самым существенным фактором минимизации воздействия на окружающую природную среду является ведение буровых работ безамбарным методом без применения нефти. Сущность безамбарного бурения, применяемого СП ОАО «Соболь» при разработке Северо-Ореховского месторождения, заключается в следующем (Аксентий, 1999). Стандартная буровая установка Уралмаш–320 ЭУК оснащается дополнительным блоком очистки и обработки бурового раствора импортного производства, состоящим из:

– двух вибросит американской фирмы DERIK;

– блока гидроциклонов;

– блока флокулянтной очистки.

Это обеспечивает практически замкнутый оборот воды, и следовательно резкое сокращение водопотребления при бурении.

Замкнутая циркуляция бурового раствора исключает образование технологических излишков бурового раствора.

Указанное средство позволяет регулировать (изменять) содержание твердой фазы в буровом растворе вплоть до полного отделения твердых частиц выбуренной породы от жидкой фазы.

Выбуренные породы практически не переходят в буровой раствор, а в виде обезвоженного шлама с вибросит и центрифуги направляется и собирается в инвентарных металлических бункерах. Благодаря применению современных средств очистки буровой раствор полностью освобождается от твердой фазы и повторно используется для технологических нужд. Таким образом, с применением вышеуказанных средств достигается новый уровень технологии бурения скважин, обеспечивающий:

– практически замкнутый оборот воды и, следовательно, резкое сокращение водопотребления при бурении;

– замкнутую циркуляцию бурового раствора, исключающую образование технологических излишков бурового раствора;

– утилизацию бурового раствора и использование бурового шлама, что исключает необходимость строительства шламовых амбаров на буровых площадках.

Для приготовления и обработки бурового раствора применяются экологически малоопасные импортные акриловые полимеры, сайпан и ДК-Дрилл.

Буровой шлам утилизируется на специальном полигоне, где из него изготавливаются стеновые строительные блоки.

При строительстве скважин на КГКМ для предотвращения попадания загрязнителей в природные воды и почву рекомендуется комбинированный способ, т. е. сочетание безамбарной системы с амбарной системной очистки, сбора, хранения, переработки и захоронения вышеперечисленных загрязнителей.

Специалистами «РУСИА Петролеум» разработана безамбарная система очистки промывочной жидкости при бурении эксплуатационных скважин, которая должна позволить, во-первых, использование воды по замкнутому циклу, то есть без сброса буровых сточных вод на ландшафт и, во-вторых, использовать предварительно отмытый и обезвреженный шлам выбуренных пород в строительно-монтажных работах (отсыпка дорог и площадок).

Технические мероприятия по снижению воздействия на окружающую среду требуют внедрения новой системы компоновки буровой скважины с комплексом дополнительного оборудования.

Безамбарная система очистки промывочной жидкости может быть совмещена со стандартной буровой установкой БУ 3000–ЭУК (Абалаков и др., 2003).

10.2. Проектирование и освоение высоконапорных горизонтов Опыт разведки подсолевых нефтегазоносных отложений в Иркутской области показывает, что бурение поисковых и разведочных скважин в мощных солевых толщах – покрышках над залежами нефти и газа нередко осложняется и даже становится невозможным из-за наличия рапопроявлений – высоконапорных фонтанов внутрисолевых рассолов. Основные причины возникновения таких аварий следующие: внезапность аварийного проявления, высокие дебиты рассолов, достигающие 30 000 м3 / сут; аномально высокие пластовые давления (АВПД), создаваемые рапой (300–400 атмосфер); высокая минерализация рапы (до 600 г/л и более) и значительное содержание в ее составе солей магния и кальция (Абалаков и др., 2003).





До начала бурения в недрах существует динамическое равновесие между пластовым давлением и горным (геостатическим).

Бурением это равновесие нарушается, что особенно сильно сказывается на геодинамике недр при вскрытии скважиной зоны АВПД.

Огромный ущерб окружающей среде может быть нанесен в результате аварийных выбросов и неконтролируемого фонтанирования скважин подземными флюидами – водой, газом и особенно нефтью. В подавляющем большинстве случаев аварийные ситуации возникают при неожиданном вскрытии скважиной зоны АВПД. Такие случаи неоднократно наблюдались при поисках, разведке и разработке нефтяных и газовых месторождений как на суше, так и в акваториях. При этом в окружающую среду попадают огромные объемы нефти, загрязняющие ее (Кучерук, Люстих, 1986).

Одним из таких крупных выбросов, зафиксированных еще на заре развития нефтяной промышленности, был выброс нефти в результате неожиданного вскрытия скважинной кровли зоны АВПД на соляном куполе Спиндтлоп в Техасе, США. При бурении скважины-первооткрывательницы, обнаружившей одноименное месторождение нефти, ударил мощный фонтан нефти дебитом от 10 до 13,5 тыс. т/сут. В результате неконтролируемого фонтанирования на земную поверхность было выброшено 108 тыс. т нефти. Образовалось целое нефтяное озеро площадью 40 га. Затем возник пожар. Окружающей среде был нанесен значительный ущерб. Другим ярким примером такого загрязнения является случай с обнаружением месторождения Эльбрус в Иране, выявленном в Центрально-Иранском (ДешгеКевир) орогенном бассейне в 1956 году. Скважинаоткрывательница этого месторождения (№ 5), обнаружившая залежь в трещинноватых известняках свиты Кум (олигоценмиоцен), залегающих под мощной соленосной покрышкой (более 400 м), из-за АВПД попала в аварию и фонтанировала нефтью в течение 82 сут. дебитом 8 100 т/сут. На земную поверхность было выброшено 664 тыс. т нефти, нанесшей значительный ущерб почве, поверхностным и подземным водам, растительному и животному миру.

Продуктивный коллектор был вскрыт на глубине 2 700 м, где пластовое давление было аномально высоким (60 МПа). Причем долотом было вскрыто всего лишь 5 см породы-коллектора.

Рапопроявления, отмечавшиеся при бурении глубоких поисковых скважин на нефть и газ в пределах Ангаро-Ленской ступени, характеризуются различной интенсивностью: от незначительных, вызывающих коагуляцию бурового раствора и повышенный расход химических реагентов для их обработки, до нескольких тысяч кубических метров в сутки. Максимальными дебитами характеризуются рапопроявления, приуроченные к галогенно-карбонатной гидрогеологической формации, объединяющей проницаемые интервалы разреза в пределах соленосной толщи нижнекембрийского возраста, в основном к осинскому, реже к балыхтинскому горизонтам усольской свиты.

В меньшей степени это относится к горизонтам бельской, булайской и ангарской свит нижнего кембрия. Притоки предельно концентрированных рассолов (м3/сут.) получены практически на всех разведочных площадях юга Иркутской области – Балаганкинской (до 1 800), Балыхтинской (до 840), Омолойской (до 3 600), Тутурской (до 7 тыс.), что в некоторых случаях привело к дополнительным затратам, связанным с ликвидацией аварий (Вахромеев, Хохлов, 1988).

Как отмечалось, подобного рода аварии случались на Ковыктинском газоконденсатном месторождении на скважинах разведочного бурения № 3,18,52. Наиболее серьезная из них произошла в январе 1994 года на скважине № 18, расположенной на водоразделе рек Орленги и Орленгской Нючи.

Несмотря на огромный интерес к проблеме АВПД широкого круга специалистов – геологов, геофизиков, геохимиков и инженеров, занимающихся поисками, разведкой и разработкой нефтяных и газовых месторождений, очень мало внимания до сих пор уделяется изучению АВПД с точки зрения охраны окружающей среды, хотя огромное значение АВПД в этом аспекте очевидно. АВПД – потенциальный источник аварий в процессе бурения. Из краткого обзора видно, что неожиданное вскрытие зон АВПД – основная причина открытых фонтанов и выбросов пластовых флюидов. Зачастую это приводит к загрязнению окружающей среды, большим материальным затратам, а часто и к человеческим жертвам.

Подведем краткие итоги. Объекты с АВПД представляют наиболее серьезную опасность из-за масштаба связанных с ними явлений, по существу технических катастроф. На первом этапе – разведки и пионерного освоения КГКМ – это один из наиболее значимых факторов, требующий всестороннего осмысления.

Недоучет этих факторов приводит:

– к аварии и затратам на перебуривание, замене оборудования;

– к серьезным экологическим последствиям, иногда катастрофического масштаба;

– гораздо позже – может происходить смятие обсадной колонны (недостаточная толщина стенки, некачественный цементаж заколонного пространства), – с активизацией перетоков из зоны АВПД в зоны с гидростатическим давленим на АНПД – т. е. в верхние водоносные горизонты, либо вниз – в продуктивный горизонт – газовую залежь.

Для формирования системы экологической безопасности на КГКМ актуально:

– опережающее изучение АВПД и разработка методики геолого-геофизического прогноза зон локализации АВПД в плане и разрезе;

– постановка специальных геологоразведочных работ (ГРР) – комплекса полевой электроразведки и сейсморазведки и дополнительного объема переинтерпретации существующих полевых геофизических материалов;

Pages:     | 1 |   ...   | 23 | 24 || 26 | 27 |   ...   | 31 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.