WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 22 | 23 || 25 | 26 |   ...   | 31 |

Рис. 9.5.1. Экзогенные геологические процессы ЛЕГЕНДА к рис. 9.5.Участки с сильным проявлением экзогенных геологических процессов и прогнозом их активизации и возникновения новых очагов и форм при техногенном воздействии:

Наиболее высокой степени экологического риска промышленного освоения: 1 – гравитационных на активных структурных уступах (1, 1, 1, 1с, 1, 1)*. 2 – криогенных на северных склонах долин в зоне развития многолетней мерзлоты и разгрузки подземных вод (1, 2, 2, 1, 1, 1), 3 – речной эрозии и наледообразования на дне долин (2, 2, 2, 1с, 1, 1).

Участки со слабым проявлением экзогенных геологических процессов и прогнозом их активизации и возникновения новых очагов и форм при техногенном воздействии:

Высокой степени риска (II): 4 – гравитационных и эрозионных на стабильных уступах (3, 3, 3, Зк, 1, 1), 5 – эрозионных на крутых склонах (3, 3, 3, 3г, 1, 1), 6 – эрозионных на дне логов (3, 3, 3, Зм, 1, 1).

Средней степени риска (III) с развитием эрозионных процессов: 7 – в водосборных воронках (3, 3, 3, Зм, 1, 2), 8 – на склонах средней крутизны (3, 3, 3, Зг, 1, 2).

Участки без видимого проявления экзогенных геологических процессов с возможным возникновением новых очагов и форм при техногенном воздействии:

Низкой степени риска с возможным развитием эрозионных процессов (IV): 9 – на пологих склонах (3, 3, 3, 3, 2, 3), 10 – на водораздельных седловинах (3, 3, 3, 3, 2, 3) Наиболее низкого риска с возможным развитием эрозионных процессов (V): 11 – на уплощенных вершинных поверхностях боковых отрогов (3, 3, 3, 3, 3, 3), 12 – на отдельных плоских вершинах (3, 3, 3, 3, 3, 3).

Дополнительные обозначения 13 – пластовые уступы; 14 – ложбины стока (делли); 15 – родники, морозное пучение; 16 – места активизации дорожной эрозии; 17 – буровые площадки К-101, К-102, К-106, К-107 и ПАЭС; 18 – трасса автомобильной дороги и внутрипромысловых трубопроводов с указанием номеров инженерногеологических участков; 19 – карьер (полигон захоронения).

*Цифры в скобках – оценочные показатели – первая, вторая и третья – пораженность, активность и интенсивность ведущих экзогенных геологических процессов, соответственно, четвертая – влияние сопутствующих процессов: с – склоновой эрозии, к – карста, м – криогенных процесов, г – гравитационных процессов, пятая – энергия рельефа. Значение величин: 1 – высокие, 2 – средние, 3 – низкие. Шестая цифра – грунтовые условия: 1 – неблагоприятные (рыхлые обводненные, в том числе многолетнемерзлые, полускальные сильно трещиноватые, либо закарстованные породы), 2 – средние (рыхлые необводненные, полускальные слабо и умеренно трещиноватые, либо закарстованные породы), 3 – благоприятные (скальные массивные).

Рис. 9.5.2. Охрана окружающей среды ЛЕГЕНДА к рис. 9.5.Наиболее высокий уровень природоохранных ограничений (I балл):

1 – рекомендуемая зона особо охраняемого режима (охрана природного разнообразия) – не допускается строительство промышленных объектов (1,1,1,1)*, 2 – структурные уступы (охрана средозащитных, биостационных функций ландшафтов) – не рекомендуется размещения площадочных объектов, допускается строительство линейных сооружений (1, 1, 1, 1).

Высокий уровень природоохранных ограничений (II балла): 3 – коренная кедровая тайга – строительство промышленных объектов с проведением мероприятий по охране кедровников и ягодников, ценных промысловых животных и их миграционных путей (1, 2, 1, 1).4 – верховья рек – охрана чистоты вод, запрет строительства площадочных объектов, допускается прокладка линейных сооружений с проведением противоэрозионных мероприятий, (1, 2, 1, 1). 5 – водосборные воронки – строительство промышленных объектов с проведением противоэрозионных мероприятий, запрет сброса загрязнителей на рельеф (2, 1, 1, 1).

Средний уровень природоохранных ограничений (Ш балла): 6 – кедровая нарушенная тайга – строительство промышленных объектов с проведением мероприятий по содействию естественному лесовосстановлению (2, 2, 2, 2).

Низкий уровень природоохранных ограничений (IV балла): 7 – гари и послепожарные мелколесья – допускается строительство любых объектов с проведением противопожарных мероприятий, содействие естественному лесовосстановлению (2–3, 3, 3, 3).

Наиболее низкий уровень природоохранных ограничений (V баллов):

8 – площадки кустового бурения и ПАЭС – могут быть использованы для последующего освоения без дополнительных ограничений, мероприятия общие (планировка, гидроизоляция, дренаж, рекультивация) (3, 3, 3, 3).

Дополнительные обозначения 9 – санитарно-защитные зоны буровых площадок и ПАЭС, 10 – охранные зоны линейных сооружений, 11 – трасса внутрипромысловых трубопроводов и автодороги с номерами участков (объектов), 12 – карьер (полигон захоронения).

* Оценочные показатели (цифры в скобках): первая цифра – экологическая ценность экосистем (1 – высокая, 2 – средняя, 3 – низкая), вторая цифра – устойчивость экосистем (1 – низкая, 2 – средняя, 3 – высокая), третья – допустимый уровень техногенного воздействия (1 – низкий, 2 – средний, 3 – высокий), четвертая цифра – степень сложности природоохранных мероприятий (1 – высокая, 2 – средняя, 3 – низкая).

Карта инженерно-экологического зонирования представляет общую схему развития территории КГКМ, раскрывает синтетическое, наиболее полное изображение природных комплексов. Вся информация, содержащаяся на данной карте, группируется по условиям, использованию и охране природных ресурсов.



В целях получения объективной и сопоставимой информации о состоянии природной среды исследуемой территории, ее изменениях в результате влияния антропогенных факторов необходимо создание карты мониторинга окружающей среды. С их помощью определяется перечень необходимых показателей, уточняются районы, пункты наблюдений, число станций, время и частота наблюдений.

Таким образом, выделение ПЭБ являются одним из способов проведения комплексной экологической оценки. Целью такой оценки являются экологическое обоснование проектов и схем развития нефтегазодобывающей отрасли. Экологическая оценка вносит вклад в обеспечение устойчивого развития, решение или предотвращение возникновения экологических проблем путем включения экологических (а не только экономических) соображений в формулировки целей развития.

Литература 1. Абалаков А. Д. Геоинформационное обеспечение и картографирование экологического риска / А. Д. Абалаков, С. Б.

Кузьмин, Л. С. Новикова и др. // Геодезия и картография. – 1997. – № 11. – С. 39–46.

2. Абалаков А. Д. Пояса экологической безопасности Ковыктинского газоконденсатного месторождения / А. Д. Абалаков, С. В. Васильев. – Иркутск : Изд-во Арт-Пресс, 2003. – 136 с.

3. Баранов Ю. Б. Толковый словарь по геоинформатике / Ю. Б.

Баранов, А. М. Берлянт, А. В Кошкарев. – М. : Изд-во МГУ, 1997. – с.

4. Берлянт А. М. Введение в картографию / А. М. Берлянт. – М. : Изд-во Рос. Открытого ун-та, 1993. – 44 с.

5. Берлянт А. М. Геоинформационное картографирование / А. М.

Берлянт // Автоматизированная картография и геоинформатика. – М., 1990. – С. 25–40.

6. Берлянт А. М. Картографический метод исследования / А. М.

Берлянт. – М. : Изд-во МГУ, 1978. – 252 с.

7. Берлянт А.М. Справочник по картографии / А. М. Берлянт. – М. :

Недра, 1998. – 428 с.

8. Верещака Т. В. Экологические карты в системе карт для оптимизации окружающей среды / Т. В. Верещака // Геодезия и картография. – 1991. – № 1. – С. 39–42.

9. Горелов С. К., Тимофеев Д. А. Принципы выделения и картографирования современных геоморфологических процессов / С. К. Горелов, Д. А. Тимофеев // Экзогенные процессы и окружающая среда. – М., 1990. – С. 22–28.

10. Заиканов В. Г. Геоэкологическая оценка территорий / В. Г. Заиканов, Т. Б. Минакова; отв. ред В. И. Осипов; Ин-т геоэкологии РАН. – М. :

Наука, 2005. – 319 с.

11. Исаченко Г. А. Экологическое картографирование на ландшафтнодинамической основе / Г. А. Исаченко //Экологическое картографирование на современном этапе : тез. докл. X Всесоюз.

конф. по тем. картографированию. – Л., 1991. – Кн. 1. – С. 77–79.

12. Комедчиков Н. Н., Лютый А. А. Экологическое картографирование в Сибири / Н. Н. Комедчиков, А. А. Лютый //Ресурсно-экологическое картографирование на основе информационных технологий. – Иркутск, 1993. – С. 16–17.

13. Комплексное экологическое картографирование. (Географический аспект) / под ред. Н. С. Касимова : учеб. пособие. – М., 1997.

14. Концепция производственного экологического мониторинга Ковыктинского газового комплекса / А. Д. Абалаков, Д. И. Стом, С. П.

Примина и др.; отв. ред. А. Д. Абалаков. – Иркутск : Иркут. ун-т, 2006.

– 262 с.

15. Малышев Ю. С. Оценка состояния экосистем – ключевое звено экологического мониторинга / Ю. С. Малышев, Ю. В. Полюшкин // География и природные ресурсы. – 1988. – № 1. – С. 28–33.

16. Основы геоэкологии / под ред. В. Г. Морачевского. – СПБ., 1994.

17. Пересадько В. А. Состояние и перспективы эколого-географического картографирования / В. А. Пересадько // Эколого-географическое картографирование и оптимизация природопользования в Сибири. – Иркутск, 1989. – Вып. 2. – С. 17–19.

18. Салищев К. А. Картоведение / К. А. Салищев. – М. : Изд-во МГУ, 1990. – 438 с.

19. Стурман В. И. Основы экологического картографирования / В. И. Стурман. – Ижевск : Удмурт. ун-т, 1995. – 219 с.

20. Стурман В. И. Экологическое картографирование : учеб. пособие / В. И. Стурман. – М. : Аспект Пресс, 2003. – 251 с.

21. Требования к геолого-экологическим исследованиями и картографированию. – 1:50 000–1: 25 000. – М. : Мингео СССР, 1990.

– 127 с.

22. Трофимов В. Т. Теоретико-методологические основы экологической геологии : учеб. пособие / В. Т. Трофимов, Д. Г. Зилинг. – СПб. : Издво С.-Петербург. гос. ун-та, 2000. – 68 с.

23. Трофимов В. Т. Теоретический базис создания эколого-геологических карт / В. Т. Трофимов, Д. Г. Зилинг. – М. : Изд-во МГУ, 2003.

24. Трофимов В. Т. Экологическая геология : учебник для вузов / В. Т. Трофимов, Д. Г. Зилинг. – М. : Геоинформмарк. 2002. – 416 с.

25. Шорников Д. В. Правовая концепция поясов экологической безопасности / Д. В. Шорников // Экология и городское хозяйство.

Материалы научно-практической конференции. – Иркутск, 1997. – С.

47–50.

26. Экологические аспекты освоения Ковыктинского газоконденсатного месторождения / А. Д. Абалаков, Э. С. Зиганшин, Ю. О. Медведев и др. – Иркутск : Изд-во Института географии РАН, 2001 – 194 с.

27. Экологические проблемы урбанизированных территорий / отв.

редактор А. Н. Антипов. – Иркутск : Изд-во ИГ СО РАН, 1998. – 200 с.

28. Экологическое картографирование Сибири / В. В. Воробьев, А. Р. Батуев, А. В. Белов и др. – Новосибирск : Наука, Сибирская издательская фирма РАН, 1996. – 279 с.





29. Методология оценки состояния экосистем. – Новосибирск : Наука, 1998. – 217 с.

30. Трофимов В. Т. Экологическая геология : учебник для вузов / В. Т. Трофимов, Д. Г. Зилинг. – М. : Геоинформмарк. 2002. – 415 с.

Глава 10. ЭКОЛОГИЧЕСКИ ОРИЕНТИРОВАННЫЕ ТЕХНОЛОГИИ РАЗРАБОТКИ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 10.1. Технология кустового наклонно-ориентированного бурения с использованием безамбарных технологий Кустовое безамбарное бурение с наклонной и горизонтальной проводкой ствола рассматривается как средство организации экономически и экологически эффективного бурения поисково-разведочных и эксплуатационных скважин.

Оно позволяет более полно, рационально и комплексно осуществлять освоение и охрану недр, решать природоохранные задачи.

Кустовое бурение заключается в проходке с одной площадки пучка скважин. Осуществляется бурение, чаще всего, одной вертикальной и нескольких, обычно 4–8, наклонных, в том числе с горизонтальным стволом. Впервые его стали применять при бурении с морских платформ на шельфе. Однако впоследствии такой способ нашел применение и на суше. Сегодня наиболее разработана технология кустового бурения в таких крупных компаниях как British Petroleum, Rust Environment & Infrastructure, Baker Hughes и др. Существует богатый мировой опыт разработки месторождений полезных ископаемых методами глубокого кустового бурения с соблюдением норм экологической безопасности. Большинство ведущих компаний мира основывают свою доктрину на концепциях допустимого риска. Многие производители вкладывают большие финансовые средства в охрану окружающей природной среды как гарант снижения общего риска производства, обеспечения экономической выгоды (прибыли) при соблюдении норм охраны окружающей среды.

Принципиальная схема проходки наклонно-горизонтальных буровых скважин и наиболее характерные ситуации, в которых эта технология наиболее эффективна, представлены на рисунке 10.1.1.

На КГКМ запроектированы наклонно-горизонтальные скважины. Пример профиля приведен на рисунке 10.1.2.

Строитель- Рис. 10.1.1. Принципиальная схема эффективных вариантов наклонно-направленного и горизонтального бурения (по Baker Hughes company) ство, проходка и эксплуатация кустов скважин позволяет сократить производственные расходы за счет обустройства одной площадки, вместо нескольких при традиционном вертикальном бурении. За счет централизации происходит упрощение производственной и социально-хозяйственной инфраструктуры, связанной со строительством и эксплуатацией инженерных сооружений и обслуживанием персонала. Сокращается протяженность линейных сооружений – дорог, трубопроводов, линий электропередачи и связи. Уменьшается количество площадочных объектов, прежде всего буровых площадок, УППГ, компрессорных станции, запорной арматуры, жилых поселков и др. Особое значение имеет снижение площадей временного и постоянного землеотвода в районах с природоохранными ограничениями. Бурение с одной площадки расходящихся в разные стороны наклонных скважин позволяет сдренировать большую площадь продуктивного горизонта, в том числе участков недр, расположенных под территориями с неблагоприятными инженерно-геологическими и экологическими условиями. Это также дает возможность избежать проходки скважин в зонах разломов и аномально-высокого давления рассолов, в местах, слабо изученных поисково-разведочным бурением и геофизическими методами.

К ограничениям кустового наклонного бурения на КГКМ относятся: удлинение ствола наклонной скважины, недостаток мощности отечественных буровых станков для бурения скважин длиной более 6 тыс. м, необходимой для достижения глубины забоя 3 тыс. м в радиусе забора газа 2 тыс. м. Используемые зарубежные станки и оборудование имеют значительно больший вес, габариты и цены. Поэтому стоимость работ, с учетом затрат на перевозку и монтаж оборудования, обучение персонала, превышает российские, что снижает рентабельность производства и срок окупаемости.

В течение длительного времени шламовые амбары являются источником повышенной опасности для окружающей среды. Исследование буровых шламов (БШ) из нерекультивированных и рекультивированных амбаров разного срока хранения показало, что способ и длительность хранения влияют на токсичность и характер трансформации компонентов нефти (Михайлова и др., 1998).

Глубина по вертикали, м.

Горизонтальное отклонение, м Рис. 10.1.2.

Профиль условно горизонтальной скважины с отклонением забоя от вертикали до м на КГКМ Поступления токсических веществ из шламовых амбаров, в которых скапливаются отходы бурения, в грунты зоны аэрации и грунтовые воды обычно происходит вследствие отсутствия или некачественной гидроизоляции дна и стенок амбаров.

Целью безамбарного бурения является создание системы замкнутого водоснабжения, максимального извлечения твердой фазы при минимальных потерях жидкой фазы. Эта цель достигается путем возврата в систему максимально возможного объема жидкой фазы и сброса как можно больше сухого шлама.

Этой целью руководствуются при выборе очистного оборудования. Только вибросита, центрифуги и обезвоживающая установка способны сбрасывать «относительно» сухой шлам (Макаренко, 1996).

Существует несколько способов утилизации жидких и твердых сбросов. Шлам на водной основе обычно рассеивается, разбавляется и сваливается на площадке.

Pages:     | 1 |   ...   | 22 | 23 || 25 | 26 |   ...   | 31 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.