WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 11 | 12 || 14 | 15 |   ...   | 34 |

Непротиворечивость множества механизмов порождает в ОС иерархию: множество параметров ОС может быть упорядочено – на нижнем уровне находятся параметры из множества L = L \ Ku, на следующем уровне – параметры, которые являu ются управляющими по отношению к параметрам нижнего уровня, но управляемыми для параметров, находящихся на более высоких уровнях иерархии, и т.д. (см. также теоретико-игровые модели синтеза иерархических структур в [166]).

Поставим в соответствие i-му параметру ОС yi активного агента, выбирающего знаечние этой переменной и обладающего целевой функцией fi: A 1, i L.

При заданном комплексе механизмов агенты из множества L будут стремиться выбирать равновесные по Нэшу стратегии.

Обозначим соответствующее множество равновесий Нэша (3) EN() = {yL AL | i L, yi Ai fi(yL, u(yL)) fi(yL|yi, u(yL|yi))}, где u(yL) – действия, выбираемые агентами из множества Ku u (эти действия при заданном комплексе механизмов определяются действиями, выбираемыми агентами из множества L).

Пусть на множестве A’ состояний системы задан функционал (): A 1, характеризующий эффективность ее функционирования. Задача синтеза оптимального комплекса механизмов может формулироваться следующим образом:

(4) min (yL, u(yL)) max, N yLE () 2, (1), (2) то есть требуется найти непротиворечивый и удовлетворяющий глобальным ограничениям (условия (2) и (1) соответственно) комплекс механизмов, обладающий максимальной гарантированной эффективностью.

Отметим, что при формулировке задачи (4) мы не учитывали явным образом интересы агентов из множества Ku. Если предu положить, что каждый из них может самостоятельно выбирать определенные механизмы управления, то получим задачу, аналогичную задаче структурного синтеза, описанной в [166].

На сегодняшний день общих методов решения задачи (4) или задачи структурного синтеза неизвестно. Поэтому на практике при синтезе комплекса механизмов либо решают задачу последовательного синтеза, либо согласовывают в рамках той или иной метамодели отдельные оптимальные механизмы управления [166].

3.6. МАТРИЧНЫЕ СТРУКТУРЫ УПРАВЛЕНИЯ В матричных структурах управления, характерных для проектно-ориентированных инновационных организаций, каждый из управляемых субъектов – агентов – может быть одновременно подчинен нескольким управляющим органам (центрам). В теории управления такие модели получили название организационных систем с распределенным контролем (РК). Специфика ОС РК заключается в том, что в них возникает игра центров, равновесие в которой определяет окончательное управляющее воздействие на агентов.

В работах [54, 73, 105, 172], посвященных изучению ОС РК, предполагается, что все управляющие органы оказывают воздействие либо на одни и те же компоненты вектора действий агента, либо на различные, но содержательно схожие (например, объем работ, продолжительность рабочего времени и т.д.) компоненты. В то же время, специфика стимулирования в управлении организационными проектами [15] такова, что, не только предпочтения, но и ответственность, возможности воздействия и т.д. различных центров могут быть определены на различных компонентах векторов действий и параметров агента (последние могут отражать, например, его квалификацию). Примером может служить взаимодействие руководителей проектов (РП) и функциональных руководителей (ФР, то есть руководителей подразделений, которым агенты принадлежат, например, по штатному расписанию).

Руководитель проекта, который использует агента как ресурс, заинтересован в результатах его деятельности и осуществляет стимулирование в зависимости от этих результатов. Функциональный руководитель получает от руководителя проекта (косвенным образом в случае принадлежности одной организации и/или в рамках договорных отношений) вознаграждение за результаты деятельности агента данной квалификации и стимулирует агента в зависимости от квалификации.

В рамках рассматриваемой ниже теоретико-игровой модели взаимодействия участников системы (агента, руководителя проекта и функционального руководителя) анализируются равновесные состояния, и обосновывается роль вышестоящих органов (устанавливающих «правила игры» для участников нижележащих уровней), которые выбором параметров механизма управления могут согласовать (в определенной степени) интересы руководителя проекта и функционального руководителя, побуждая их, соответственно, эффективно управлять деятельностью агентов и повышать квалификацию последних.

Рассмотрим ОС, состоящую из трех участников: РП, ФР и агента (см. Рис. 25), имеющих соответственно следующие целевые функции:

(1) ((), 0(), y, r) = H(y) – (y) – 0(y, r), (2) 0(0(), (), y, r) = 0(y, r) – (r) – c0(r), (3) f((), (), y, r) = (y) + (r) – c(y, r), где H(y) – функция дохода РП; (y), 0(y, r), (r) – функции стимулирования, c(y, r) – функция затрат агента, c0(r) – функция затрат ФР, y A – действие агента, r – тип агента, отражающий его квалификацию (эффективность деятельности).

РП 0(y, r) ФР (y) (r) Агент Рис. 25. Фрагмент матричной структуры управления Содержательно, агент, подчиненный ФР, выбирает в рамках проекта, выполняемого под руководством РП, свой тип r и действие y A. РП получает от выбора этого действия доход H(y) и выплачивает агенту вознаграждение (y), где : A 1, а также + стимулирует ФР в размере 0(y, r), где 0: A 1, за исполь+ зование подчиненного последнему агента. Вознаграждение агента складывается из стимулирования, получаемого от РП и зависящего от его действий, и стимулирования (r), где : 1, получае+ мого от ФР и зависящего от типа (квалификации) агента. Вторая составляющая оплаты может рассматриваться как тарифный оклад, не зависящий от действий. Затраты агента c(y, r) по выбору действия y A зависят от его квалификации r. Повышение или поддержание квалификации агента (в последнем случае стимулирование со стороны ФР может рассматриваться как тарифный оклад, не зависящий от действий и/или результатов деятельности агента) требует от ФР затрат c(r). Кроме того, в целевые функции участников рассматриваемой ОС могут входить константы, отражающие постоянные и не зависящие от их действий доходы или расходы (постоянные издержки, фиксированная составляющая оплаты и т.д.).



Предположим, что стимулирование агента со стороны РП и ФР известно ему на момент принятия решений о выбираемых типе и действии. В силу гипотезы рационального поведения [83, 84, 109] агент будет при известном стимулировании стремиться своим выбором максимизировать собственную целевую функцию (3).

В рассматриваемой модели матричной структуры управления задача управления, решаемая с точки зрения РП, заключается в нахождении РП систем стимулирования, побуждающих ФР и агента выбирать такие стратегии, которые максимизировали бы целевую функцию РП (1).

Множество решений игры (множество реализуемых типов и действий) можно записать как:

(4) P(, ) = {(y’, r’) A | y A, r (y’) + (r’) – c(y’, r’) (y) + (r) – c(y, r) }.

Лемма 3.1.,, y’ A, r’ : если (y’, r’) P(, ), то (y’, r’) P(*, *), где ( y'), y = y' (5) *(y) = 0, в остальных случаях, (r'), r = r' (6) *(r) = 0, в остальных случаях.

Доказательство леммы 3.1 заключается в подстановке (5), (6) в (4).

Содержательно, лемма 3.1 означает, что РП и ФР достаточно ограничиться классом компенсаторных систем стимулирования вида (5)-(6), которые могут интерпретироваться как договоры, предусматривающие фиксированные выплаты агенту за выполнение им условий договора (выбор соответствующих действий и типов).

Из (4)-(6) следует, что (y’, r’) P(*, *) (7) *(y’) + *(r’) – c(y’, r’) – c(y, r) y A, r.

Введем следующие предположения.

B.3.1. A = 1, – компакт.

+ B.3.2. а) r min c(y, r) = 0;

yA б) c(y, r) не убывает по y A и не возрастает по r ; c0(r) не убывает по r.

Содержательно введенные предположения означают, что действием агента является выбор положительнозначной скалярной величины (которая может интерпретироваться как объем произведенных работ, число отработанных часов и т.д.), причем, независимо от квалификации, выбором нулевого действия агент может обеспечить себе, как минимум, нулевые затраты. Кроме того, затраты агента не уменьшаются с увеличением действия при фиксированной квалификации и не увеличиваются с ростом квалификации при фиксированном действии, а затраты ФР по повышению квалификации агента монотонны.

Из (7) следует, что в рамках предположений B.3.1 и B.3.2 для любых (y’, r’) P(*, *) имеет место:

(8) *(y’) + *(r’) c(y’, r’).

Обсудим теперь порядок функционирования. Предположим, что сначала РП устанавливает стимулирование для ФР и агента, затем свое стимулирование выбирает ФР и, наконец, агент выбирает свои действия и типы. Таким образом, в рассматриваемой игре стратегией РП является выбор функций стимулирования () и 0(), стратегией ФР – выбор функции стимулирования (), стратегией агента – выбор типа r и действия y.

Задача ФР заключается в максимизации собственной целевой функции (2) выбором функции стимулирования агента () при известном стимулировании со стороны РП. Обозначим P(0) – множество систем стимулирования (), на которых достигается максимум целевой функции (2) при условии, что агент выбирает действия, стремясь максимизировать свою целевую функцию (3) при стимулировании (5)-(6). Справедлив следующий аналог леммы 3.1.

Лемма 3.2. 0, *, *, (y’, r’) P(*, *): если * P(0), то * P(0*), где ( y',r'), y = y',r = r' (9) 0*(y, r) = 0, в остальных случаях.

Доказательство леммы 3.2 заключается в подстановке (9) в определение P(0).

Содержательно лемма 3.2 означает, что РП может ограничиться классом систем стимулирования (9), в соответствии с которым он выплачивает ФР вознаграждение только в случае предоставления последним для участия в проекте агента, обладающего требуемой квалификацией и выполняющего заданный объем работ.

Лемма 3.3. Парето-эффективными для РП и ФР и реализующими соответствующие действия и типы агента являются платежи, обращающие (8) в равенство, то есть (10) (y’, r’) P(*, *) *(y’) + *(r’) = c(y’, r’).

Доказательство леммы 3.3 очевидно (см. также [73, 172]).

Если потребовать, чтобы значения целевых функций участников системы были неотрицательны (условие индивидуальной рациональности), то получим, что (y’, r’) P(*, *), помимо (10), должна выполняться следующая система неравенств:

(11) *(y’) + 0*(y’, r’) H(y’), (12) *(r’) + c0(r’) 0*(y’, r’).

Отметим, что при неотрицательном стимулировании в рамках предположения B.3.2 агент всегда может обеспечить себе нулевую полезность, выбрав нулевое действие.

Таким образом, в соответствии с леммами 3.1-3.3 использование систем стимулирования (5), (6), (9), удовлетворяющих (10)(12), обеспечивает реализуемость действия y’ и типа r’. Рассмотрим, какие типы и действия выгодно реализовывать РП.

Из условия задачи (y’, r’) max следует, что ( y',r'), (10)-(12) должно быть выполнено:





(13) *(y’) + *0(y’, r’) = c(y’, r’) +c0(r’), (то есть РП заинтересован в выполнении (12) как равенства), откуда следует справедливость утверждения следующей леммы.

Лемма 3.4. Целевая функция РП достигает максимума при реализации действий и типов агента (y*, r*), определяемых в результате решения следующей задачи:

(14) (y*, r*) = arg max {H(y) – c0(r) – c(y, r)}.

yA,r Интересно отметить, что в соответствии с леммой 3.4 реализовывать оказывается выгодно действия и типы, которые оптимальны по Парето с точки зрения всех участников ОС (исследовать неэффективные по Парето равновесия мы не будем – см. [172]).

Анализ выражений (10)-(13) дает простое необходимое условие существования индивидуально-рационального и Паретоэффективного равновесия: c(y*, r*) + c0(r*) H(y*), то есть эффект от участия агента в проекте не должен быть меньше суммы его собственных затрат и затрат ФР по обеспечению требуемой квалификации агента.

Обозначим: = H(y*) – c0(r*) – c(y*, r*). Результаты лемм 3.13.4 обосновывают справедливость следующего утверждения, дающего решение задачи управления в рассматриваемой модели матричной структуры управления.

Утверждение 3.2. Оптимальные с точки зрения РП действия и типы агента (14) реализуются системами стимулирования (5), (6), (9), удовлетворяющими (10)-(13). При этом значение целевой функции РП равно.

Задача управления выше была сформулирована с точки зрения РП. В то же время, условия (10)-(14) дают нечто большее, чем решение данной задачи, а именно, они характеризуют множество стратегий участников, которые являются равновесными по Нэшу в игре РП и ФР и Парето-эффективными с точки зрения всех участников ОС – РП, ФР и агента (см. условие (14)). Множество этих стратегий (то есть стратегий, удовлетворяющих (10)-(12)) назовем областью компромисса (см. аналогии с областью компромисса в трудовых контрактах в [129, 163] и в ОС РК [172]).

Наличие непустой области компромисса в рассматриваемой модели позволяет утверждать, что характерной особенностью матричных структур управления является неединственность эффективных равновесных управляющих воздействий, приводящих к одним и тем же результатам деятельности управляемого субъекта.

Решением задачи управления в том виде, в котором она сформулирована выше (когда первый ход делает РП), является точка, принадлежащая области компромисса, которая наиболее выгодна для РП, то есть точка, обращающая (12) в равенство. В то же время, введение области компромисса позволяет ставить и решать и другие задачи, например, выбор состояния ОС, оптимального с точки зрения ФР и др. Рассмотрим в качестве иллюстрации следующий пример.

Пример 3.2. Пусть H(y) = y, с0(r) = r2, c(y, r) = y2/2r. Из (14) следует, что y* = r* = 1/4. Из (10)-(12) получаем, что стимулирование (5), (6), (9) должно удовлетворять следующей системе неравенств:

(15) * + * = 1/8, (16) * + 0* 1/4, (17) * + 1/16 0*.

Область компромисса, задаваемая системой неравенств (15)(17) и требованием неотрицательности стимулирования, затенена на Рис. 26.

0* 0* = * F 1/E 3/D 1/B C *(*) * A 3/1/8 1/Рис. 26. Область компромисса в примере 3.Проанализируем характерные точки Рис. 26. Прямая AB отражает зависимость *(*), получающуюся из условия (10) (в рассматриваемом примере – (15)), которое гласит, что руководители должны совместно компенсировать затраты агента. Область компромисса, лежащая между прямыми CD и EF показывает, что диапазон суммарных выплат РП функциональному руководителю и агенту лежит между 3/16 и 1/4. Выигрыши РП и ФР при этом равны соответственно 1/16 и 0.

Если РП устанавливает правила игры, то есть делает ход первым, сообщая свои стратегии ФР и агенту, то он заинтересован в минимизации собственных выплат (ему выгодна прямая CD).

Следовательно, у него есть две альтернативы – самому оплатить все затраты агента и «стоимость» изменения его квалификации ФР (точке C соответствуют платежи C* = 1/8, *0C = 1/16), либо выплатить ФР сумму *0D = 3/16, обязав его компенсировать затраты агенту (точка D). Если правила игры устанавливает ФР, делая ход первым и сообщая свои стратегии РП и агенту, то он заинтересован в минимизации собственных выплат (ему выгодна прямая EF).

Следовательно, у него есть две альтернативы, отличающиеся от альтернатив РП тем, что прибыль остается у ФР. Выигрыши РП и ФР при этом равны соответственно 0 и 1/16. Другими словами, ФР и РП делят полезность 1/16 и эту «прибыль» получает тот, кто делает ход первым (см. также [72, 129, 166]). • Наличие области компромисса, то есть целого множества возможных эффективных взаимодействий РП и ФР, свидетельствует о присутствии возможности управления системой, состоящей из РП, ФР и агента, поэтому исследуем роль вышестоящих органов.

Как отмечалось выше, в управлении проектами РП использует агента, подчиненного ФР, как ресурс, следовательно, необходимо исследовать возможные формальные взаимодействия между ними.

Область компромисса, задаваемая неравенствами (10)-(12), задает ту область возможных значений, относительно которой РП и ФР могут вести переговоры. Фактически, им необходимо придти к договоренности о том, как распределить между собой «прибыль», равную (см. также механизмы распределения ресурса в распределенных системах принятия решений [73] и механизмы компромисса в договорных отношениях [129]), равную следующей величине:

= H(y*) – c0(r*) – c(y*, r*).

Pages:     | 1 |   ...   | 11 | 12 || 14 | 15 |   ...   | 34 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.