WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 || 3 | 4 |   ...   | 15 |

Во-первых, посредством естественного языка (как конечный результат, поскольку в процессе построения моделей человеком используются и неязыковые формы мышления – «интуиция», образное мышление и т.д.). На естественном языке человек может говорить обо всем, этот язык является средством построения любых абстрактных моделей. Универсальность естественного языка достигается еще и тем, что языковые модели обладают неоднородностью, расплывчатостью, размытостью. Многозначность почти каждого слова, используемого в естественном языке любой национальности, а также неопределенность слов (несколько, почти, много и т.д.) при огромном числе вариантов их соединения во фразы позволяет любую ситуацию отобразить с достаточной для обычных практических целей точностью. Эта приблизительность является неотъемлемым свойством языковых моделей. Но рано или поздно практика сталкивается с ситуациями, когда приблизительность естественного языка оборачивается недостатком, который необходимо преодолевать.

Поэтому, во-вторых, для построения абстрактных моделей используются «профессиональные» языки. Их применяют люди, связанные общими для них, но частными для всех остальных людей, видами деятельности. Наиболее ярко это проявляется на примере языков конкретных отраслей наук сильной версии – физики, химии и др. (см. [67]). Дифференциация наук объективно потребовала создания специализированных языков, более четких и точных, чем естественный.

В-третьих, когда средств естественного и профессионального языков не хватает для построения моделей, используются искусственные, в том числе формализованные, языки – например, в логике, математике. К искусственным языкам также относятся компьютерные языки, чертежи, схемы и т.п.

В результате получается иерархия языков и соответствующая иерархия типов моделей. На верхнем уровне этого спектра находятся модели, создаваемые средствами естественного языка, и так вплоть до моделей, имеющих максимально достижимую определенность и точность для сегодняшнего состояния данной отрасли профессиональной деятельности. Наверное, так и следует понимать известные высказывания И. Канта и К. Маркса о том, что любая отрасль знания может тем с большим основанием именоваться наукой, чем в большей степени в ней используется математика.

Математические (в строгом смысле) модели обладают абсолютной точностью. Но чтобы дойти до их использования в какой-либо области, необходимо получить достаточный для этого объем достоверных знаний. Нематематизированность многих общественных и гуманитарных наук не означает их ненаучности, а есть следствие познавательной сложности их предметов. В них модели строятся, как правило, с использованием средств естественного языка.

Функции моделирования. Можно выделить следующие функции моделирования:

- дескриптивная функция;

- прогностическая функция;

- нормативная функция.

Дескриптивная функция заключается в том, что за счет абстрагирования модели позволяют достаточно просто объяснить наблюдаемые на практике явления и процессы (другими словами, они дают ответ на вопрос «почему мир устроен так»). Успешные в этом отношении модели становятся компонентами научных теорий и являются эффективным средством отражения содержания последних (поэтому познавательную функцию моделирования можно рассматривать как составляющую дескриптивной функции).

Прогностическая функция моделирования отражает его возможность предсказывать будущие свойства и состояния моделируемых систем, то есть отвечать на вопрос «что будет».

Нормативная функция моделирования заключается в получении ответа на вопрос «как должно быть» – если, помимо состояния системы, заданы критерии оценки ее состояния, то за счет использования оптимизации (см. ниже) возможно не только описать существующую систему, но и построить ее нормативный образ – желательный с точки зрения субъекта, интересы и предпочтения которого отражены используемыми критериями.

Нормативная функция моделирования тесно связана с решением задач управления, то есть, ответе на вопрос «как добиться желаемого (состояния, свойств системы и т.д.)».

Требования, предъявляемые к моделям. Для того чтобы создаваемая модель соответствовала своему назначению, недостаточно создать просто модель. Необходимо, чтобы она отвечала ряду требований. Невыполнение этих требований лишает модель ее модельных свойств.

Первым требованием является ингерентность модели, то есть достаточная степень согласованности создаваемой модели со средой, чтобы создаваемая модель была согласована со средой, в которой ей предстоит функционировать, входила бы в эту среду не как чужеродный элемент, а как естественная составная часть [26].

Другой аспект ингерентности модели состоит в том, что в ней должны быть предусмотрены не только «стыковочные узлы» со средой («интерфейсы»), но, и, что не менее важно, в самой среде должны быть созданы предпосылки, обеспечивающие функционирование будущей системы. То есть не только модель должна приспосабливаться к среде, но и среду необходимо приспосабливать к будущей системе.

Второе требование – простота модели. С одной стороны, простота модели – ее неизбежное свойство: в модели невозможно зафиксировать все многообразие реальных ситуаций.

С другой стороны, простота модели неизбежна из-за необходимости оперирования с ней, использования ее как рабочего инструмента, который должен быть обозрим и понятен, доступен каждому, кто будет участвовать в реализации модели.

С третьей стороны, есть еще один, довольно интересный и непонятный пока аспект требования простоты модели, который заключается в том, что чем проще модель, тем она ближе к моделируемой реальности и тем удобнее для использования. Классический пример – геоцентрическая модель Птолемея и гелиоцентрическая модель Коперника. Обе модели позволяют с достаточной точностью вычислять движение планет, предсказывать затмения солнца и т.п. Но модель Коперника истинна и намного проще для использования, чем модель Птолемея. Ведь недаром древние подметили, что простота – печать истины. У физиков, математиков есть довольно интересный критерий оценки решения задач: если уравнение и/или его решение простое и «красивое» – то оно, скорее всего, истинно.



Можно привести и такой пример. В книге нобелевского лауреата Г. Саймона [96] рассматривается следующая ситуация. Предположим, что мы наблюдаем за тем, как муравей движется по песку из одной точки в другую. Целью муравья может быть стремление минимизировать затраты своей энергии, поэтому он огибает горки песка. Его «целевая функция» характеризует зависимость затрат энергии, которые он хочет минимизировать, от рельефа (внешней среды), и от его траектории (действия). Пусть мы наблюдаем только проекцию на горизонтальную плоскость траектории муравья. Если рельеф, по которому двигался муравей, неизвестен, то объяснить поведение муравья (сложную, петляющую траекторию) довольно непросто, и придется строить весьма хитроумные модели. Но если «угадать», что цель муравья проста, и включить в модель «рельеф», то все существенно упростится. По аналогии Г. Саймон выдвигает гипотезу, что наблюдаемое разнообразие и сложность поведения людей объясняются не сложностью принципов принятия ими решений (выбора действий), которые сами по себе просты, а разнообразием ситуаций (состояний внешней среды), в которых принимаются решения. С этим мнением вполне можно согласиться. Вопрос только в том, как найти эти простые принципы Наконец, третье требование, предъявляемое к модели – ее адекватность. Адекватность модели означает возможность с ее помощью достичь поставленной цели проекта в соответствии со сформулированными критериями (см. также Рис. 2 и обсуждение проблем адекватности математических моделей ниже). Адекватность модели означает, что она достаточно полна, точна и истинна.

Достаточно не вообще, а именно в той мере, которая позволяет достичь поставленной цели. Иногда удается (и это желательно) ввести некоторую меру адекватности модели, то есть определить способ сравнения разных моделей по степени успешности достижения цели с их помощью.

Методы моделирования. Методы моделирования систем можно разделить на два класса. Называются эти классы в разных публикациях по-разному:

– методы качественные и количественные. Смысл разделения понятен. Однако такое разделение не совсем точно, поскольку качественные методы могут сопровождаться при обработке получаемых результатов и количественными представлениями, например с использованием средств математической статистики;

– методы, использующие средства естественного языка, и методы, использующие специальные языки. Смысл разделения также понятен, но тоже не совсем точен, поскольку графические методы (схемы, диаграммы и т.д.) в первый класс не попадают, но широко используются в практике;

– методы содержательные и формальные. Разделение тоже не точно, поскольку компьютерное моделирование может требовать минимальной формализации.

И так далее.

Существует множество более детальных классификаций моделей и/или видов моделирования. Например, на Рис. 1 приведена система классификаций видов моделирования, заимствованная из [102].

Мы не будем рассматривать качественные методы моделирования (см. [26, 67, 88]), а перейдем сразу к количественным.

Рис. 1. Система классификаций видов моделирования Количественные методы моделирования (математическое моделирование). Для исследования характеристик процесса функционирования любой системы математическими методами, включая и компьютерное моделирование, должна быть проведена формализация этого процесса, то есть построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта и требуемой достоверности и точности решения этих задач. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности.

Можно выделить следующие этапы построения математической модели (см. также Рис. 2).

1. Определение предмета и цели моделирования, включая границы исследуемой системы и те основные свойства, которые должны быть отражены.

Наблюдаемое поведение ОБЪЕКТ Р Е Класс моделей А Л И З Множество А частных моделей ИДЕНТИФИКАЦИЯ Ц И АНАЛИЗ И АДЕКВАТНОСТИ Я Конкретная модель Ожидаемое поведение Решение задачи Анализ выбора устойчивости Оптимальное решение Рис. 2. Этапы построения и исследования математической модели 2. Выбор языка (аппарата) моделирования. На сегодняшний день не существует общепризнанной классификации методов математического моделирования. Например, в [78] было предложено выделить оптимизационные и теоретико-игровые модели.

Оптимизационные модели могут использовать аппарат теории вероятностей (теория надежности, теория массового обслуживания, теория статистических решений), теории оптимизации (линейное и нелинейное, стохастическое, целочисленное, динамическое и др. программирование, многокритериальная оптимизация), дифференциальных уравнений и оптимального управления, дискретной математики (теория графов, теория расписаний и т.д.) – см. подробности в [16, 23, 92, 95].





Теоретико-игровые модели могут использовать аппарат некооперативных игр, кооперативных игр, повторяющихся игр, иерархических игр, рефлексивных игр (см. подробности в [38, 80]).

Теория игр – раздел прикладной математики, исследующий модели принятия решений в условиях несовпадения интересов сторон (игроков), когда каждая сторона стремится воздействовать на развитие ситуации в собственных интересах. Под игрой при этом понимается взаимодействие сторон, интересы которых не совпадают [38].

Существуют несколько сотен «аппаратов» моделирования (см.

библиографические ссылки выше), каждый из которых представляет собой разветвленный раздел прикладной математики. Описывать всех их подробно в рамках настоящей книги не представляется возможным (да и целесообразным). В качестве примера проиллюстрируем, какого рода модели позволяет строить теория графов.

Теория графов – раздел дискретной математики. Неформальное определение графа таково: графом называется совокупность вершин (изображаемых кружками) и связей между ними, изображаемых ориентированными дугами (со стрелками) или неориентированными ребрами (без стрелок) – см. Рис. 3.

Язык графов оказывается удобным для моделирования многих физических, технических, экономических, биологических, социальных и других систем.

Приведем ряд примеров приложений теории графов (более подробное описание перечисляемых и других задач можно найти в [16, 23]).

вершина дуга ребро Рис. 3. Пример графа а) «Транспортные» задачи, в которых вершинами графа являются пункты погрузки/разгрузки, а ребрами – дороги (автомобильные, железные и др.) и/или другие транспортные (например, авиационные) маршруты. Другой пример – сети снабжения (энергоснабжения, газоснабжения, снабжения товарами и т.д.), в которых вершинами являются пункты производства и потребления, а ребрами или дугами – возможные маршруты перемещения (линии электропередач, газопроводы, дороги и т.д.). Соответствующий класс задач оптимизации потоков грузов, размещения пунктов производства и потребления и т.д., иногда называется задачами обеспечения или задачами о размещении. Их подклассом являются задачи о грузоперевозках.

б) «Технологические задачи», в которых вершины отражают производственные элементы (заводы, цеха, станки и т.д.), а дуги – потоки сырья, материалов и продукции между ними, заключаются в определении оптимальной загрузки производственных элементов и обеспечивающих эту загрузку потоков.

в) Обменные схемы, являющиеся моделями таких явлений как бартер, взаимозачеты и т.д. Вершины графа при этом описывают участников обменной схемы (цепочки), а дуги – потоки материальных и финансовых ресурсов между ними. Задача заключается в определении цепочки обменов, оптимальной с точки зрения, например, организатора обмена и согласованной с интересами участников цепочки и существующими ограничениями.

г) Управление проектами (см. также главу 2). С точки зрения теории графов проект – совокупность операций и зависимостей между ними (сетевой график). Хрестоматийным примером является проект строительства некоторого объекта. Совокупность моделей и методов, использующих язык и результаты теории графов и ориентированных на решение задач управления проектами, получила название календарно-сетевого планирования и управления (КСПУ). В рамках КСПУ решаются задачи определения последовательности выполнения операций и распределения ресурсов между ними, оптимальных с точки зрения тех или иных критериев (времени выполнения проекта, затрат, риска и др.).

д) Модели коллективов и групп, используемые в социологии, основываются на представлении людей или их групп в виде вершин, а отношений между ними (например, отношений знакомства, доверия, симпатии и т.д.) – в виде ребер или дуг. В рамках подобного описания решаются задачи исследования структуры социальных групп, их сравнения, определения агрегированных показателей, отражающих степень напряженности, согласованности взаимодействия, и др.

3. Выбор переменных, описывающих состояние системы и существенные параметры внешней среды, а также шкал их измерения и критериев оценки.

Отметим, что при построении моделей сложных систем часто приходится использовать иерархические наборы переменных, описывающих систему с различной степенью детализации, то есть использующих агрегирование информации. Наличие агрегирования (сжатия) информации неизбежно присуще организационным иерархиям2 [72], агрегирование экономических и других показателей происходит в любых социально-экономических системах [46], в управлении проектами возникает необходимость агрегированного описания подпроектов [6, 49], в задачах управления нельзя обойтись без агрегированного описания состояний управляемой систе Так, например, руководителю крупной организации вовсе не обязательно знать, чем в каждый момент времени занят каждый из сотрудников этой организации; руководителю необходимо иметь общее представление о текущих результатах деятельности более или менее крупных подразделений.

мы (так называемая задача комплексного оценивания3) [78, 88] и т.д. Подробное описание используемых при этом формальных методов можно найти в литературе, ссылки на которую приведены выше.

4. Выбор ограничений, то есть множеств возможных значений переменных, и начальных условий (начальных значений переменных).

Pages:     | 1 || 3 | 4 |   ...   | 15 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.