WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 7 | 8 || 10 | 11 |   ...   | 15 |

Сравним РБС с концепциями равновесий, более общих, чем равновесие Нэша, предлагавшихся другими авторами. В [109; 110] построена на основе введенной базовой системы равновесий последовательность ослабляющихся равновесий и итерационная схема поиска наисильнейшего из них для конкретных задач. При применении этой схемы рассматриваемая задача (сформулированная в разделе 2.2.2) «попадает между» двумя соседними элементами построенной последовательности. Под более слабое определение А-равновесия попадает любой набор стратегий игроков (при введении условия строгой положительности f (x)), а для более сильного определения В-равновесий в данной игре не существует. Но так как базовая система является открытой, то она может быть дополнена РБС в качестве еще одного базового элемента.

Интересный подход к нахождению решения игры без равновесия Нэша, предложенный в [105], разбирался в качестве примера в разделе 2.2.4.2. Построенный в статье алгоритм исследования соревновательной системы стимулирования эквивалентен построению РБС для случая нулевого порядка безопасности.

Рассматриваемая игра – с фиксированной суммой выигрыша. Она не кооперативна, здесь не может использоваться концепция Паретооптимальности. Эта игра также бескоалиционна. Все игроки действуют строго эгоистично, и не договариваясь. Так что данное расширение понятия равновесия получено в духе традиционных некооперативных предположений о поведении игроков, только за счет введения простейшей стратегической рефлексии, достаточно естественной с точки зрения смысла игры. Этот смысл – каждый игрок преследует цель увеличения своего выигрыша до тех пор, пока не «подставляется» под угрозу со стороны любого другого игрока, и знает, что все другие игроки действуют таким же образом. При этом каждому игроку не трудно рассчитать (даже на чисто интуитивном уровне) области своей безопасности.

Исследование РБС основано не только на учете угроз одному игроку со стороны других (простые безопасные стратегии), но и на учете этого учета угроз другими игроками (сложные безопасные стратегии). Этим метод поиска безопасных стратегий существенно отличается от подходов, стремящихся исключить рефлексию, таких как метод гарантированного результата или решение в смешанных стратегиях, и часто приводит к другим решениям.

Наиболее содержательным подходом кажется рассмотрение РБС с точки зрения рефлексивности [94]. Там теоретические результаты сформулированы для произвольного числа игроков, но в качестве примеров рассматриваются в основном игры с небольшим количеством участников (два, три, несколько). В задачах с большим количеством игроков возникает особый вид стратегической рефлексии. С одной стороны, игроки, придерживающиеся РБС, используют рефлексию бесконечного ранга, как представления о способе построения стратегий партнерами в рамках общего знания. С другой стороны, при построении конкретной стратегии с порядком безопасности m игрок учитывает область безопасных стратегий порядка m - 1 другого игрока, который учитывает безопасные стратегии порядка m - 2 третьего, и так далее, то есть использует рефлексивное рассуждение с рангом m. При этом ранг рефлексии второго вида должен быть меньше, чем число игроков. При решении игры используется стратегическая рефлексия порядка не больше m – 1 (для случая строго монотонной функции решаемой в разделе 2.2.5 достигается уровень рефлексии m – 2). Определения 2, 3 и 4 задают структуру общего знания игроков о поведении друг друга, а граф угроз РБС наглядно отображает эту структуру.

2.2.8. Окончательное формирование стратегий банков и вкладчиков Итак, получено решение задачи, сформулированной в разделе 2.2.2.

При рассмотрении задачи для непрерывного случая предполагалось, что ресурс, расположенный в промежутке предложений банков [i, i + 1], делится между ними по средней точке (i + i + 1) / 2. Но, так как область предпочтений вкладчика не является симметричной относительно точки его оптимального выбора, то такое предположение не точно. Пусть * – (субъективно) оптимальный выбор вкладчика, для которого предложения i и i + 1 равноценны. Обозначим d = i – i + 1, = * – (i + i + 1) / 2 и оценим порядок малости величины (d).

Пусть КРП Q(, 1) проходит через точку оптимальности вкладчика, а КРП Q(, 1’) – через точки предложений банков i и i + 1. Так как мы рассматриваем ситуацию с позиции вкладчика, то оптимальность и оценки рискованности предложений банков здесь субъективные:

Q(*, 1) = W (*), Q(i, 1’) = W (i), Q(i + 1, 1’) = W (i + 1). Точку пересечения КРП Q(, 1’) с линией субъективного выбора S() обозначим *’ и разложим функцию Q(, 1’) – W () в ряд Тейлора в этой точке:

A() = Q(, *’)–W() = a0+a1(–*’)+a2(–*’)2+a3(–*’)3+o(–*’)3.

Обозначим ‘ = *’ – (i + i + 1) / 2 и исследуем порядок малости ‘ относительно d. Точки i и i + 1 являются корнями уравнения Q(, 1’) - W () = 0. Если мы рассмотрим ряд только с четными членами, то корни такой функции (обозначим их ’, ’ ) будут симметричны отi i + носительно *’. Оценим, насколько они смещаются от наличия нечетных членов ряда. Коэффициент a1 = 0, так как производные функций Q(, 1’) и W () равны в точке = *’. При разложении в ряд все четные коэффициенты, начиная с a2 отрицательны, а нечетные – положительны. Из этого следует, что корни i, i + 1 смещены относительно корней для ряда с только четными членами в положительную сторону, это означает, что ‘ отрицательно. Отметим, что a0 = O(d2). Будем рассматривать только члены ряда только до степени 3, так как последующие члены будут давать поправки таких степеней малости, что не будут влиять на рассматриваемую оценку.



Отметим, что a0 = O(d2). Оценим, какое смещение корней даст член a3 ( - *’)3 относительно симметричной картины.

A(’ ) = a3 (’ – *’)3 + o(’ – *’)3, i + 1 i + 1 i + A(’ ) = 2a2 (’ – *’) + o(’ – *’), i + 1 i + 1 i + i + 1 – ’ = – (a3 / 2a2) (’ – i + 1)2 + o(’ – i + 1)2.

i + 1 i + 1 i + Итак, показано, что смещение корней относительно симметричного положения имеет квадратичный порядок малости: ‘ = O(d2).

Теперь рассмотрим величину (* – *’). Она также отрицательна.

a0 = (* – *’) (S() – W()), a0 = (* – *’) (c2/ – 1) h, (* – *’) = a0 / ((c2 – ) h)= O(d2).

Отсюда следует, что = (* – *’) + ‘ = O(d2). То есть смещение точки равноценности двух соседних банковских предложений от средней между ними точки имеет квадратичный порядок малости относительно разности между этими предложениями. Из приведенных выше рассуждений можно вычислить оценку коэффициента при этом квадратичном члене, но величина d по смыслу задачи настолько мала, что нас вполне удовлетворяет сам факт квадратичной малости полученной оценки. Эти отклонения от рассмотренного построения РБС настолько малы, что ими можно пренебречь.

Итак, в итоге построенной модели получена следующая последовательность действий участников рынка, в соответствии с порядком функционирования АС (раздел 1.3). Сначала вкладчики формируют свои предпочтения относительно ставок в форме субъективно оптимальных выборов на линии ДПБ, путем нахождения информационного равновесия во вспомогательной игре, сформулированной в разделе 2.1.1. Потом банки, наблюдая субъективно оптимальные выборы вкладчиков, формируют свои предложения (действия) i путем нахождения равновесия в безопасных стратегиях. Наконец каждый вкладчик в качестве своего действия выбирает тот банк, предложение которого наиболее близко к его субъективно оптимальному выбору.

Прежде чем сформулировать в утверждении результаты промоделированной игры, напомним некоторые введенные ранее обозначения и допущения. Ограничением рассмотренной модели является фиксированная разность между ставками размещения и привлечения средств банками: i – i = Const; kрез – коэффициент обязательных отчислений в резервный фонд;

Ki – величина собственного капитала банка.

Утверждение 16. В игре банков и вкладчиков по формированию сбережений в условиях отсутствия страхования действия участников следующие. Субъективно оптимальный выбор вкладчика, соответствующий ему субъективный и объективный риск:

(1 - c2 j ) *ср (1 - h0 ) (а) * = - +, i (1 - )c2 j h 1 - (1 - )c2 j 1 - ( -0 ) h *ср =, 1 - n dl xl =, dl =, n c2l l =xk k =c2 j h ~ R * = (1 + * ) -1, j j R * = h( * -0 ).

j j Предложения банков i определяются методом поиска равновесия в безопасных стратегиях при разделе ресурса Fi, распределенного по линии ДПБ, где:

Ki ((1 + Ri ) - 1) (б) Fi = + X (1 + Ri ), i Const X = x, i j i +i i +i + j:* -1, j 2 Ri = h(i -0).

Действия вкладчиков по выбору банков:

(в) ij arg max( * -i ).

j i{1,...,m} Значения целевых функций вкладчиков и коммерческих банков:

(1- * +ij ) x j j (г) CBj (ij ) =, 1+ h( * +ij -0 ) j ij = * -i, j j (д) CКБi (i ) = (Ki + Const X (1- k ) -i X k ).

i рез i рез 1+ h(i -0 ) Доказательство. Формула (а) следует из (34), (б) – из (36). Формулы (г) и (д) получаются подстановкой в целевые функции (1), (2) значений для стратегий.

Развернутым доказательством утверждения является содержание раздела 2.1 (определение действий вкладчиков как построение информационного равновесия, утверждения 1-4) и раздела 2.2 (определение действий банков как построение равновесия в безопасных стратегиях, утверждения 7-12).

2.3. Выводы для случая без страхования Сначала, до рассмотрения игры в целом, следует обсудить те упрощающие допущения, которые мы сделали при исследовании задачи, и ограничения, которые они накладывают на полученные выводы. Прежде всего, рассмотрим условия, налагавшиеся на ставки привлечения и размещения, и на объем привлекающихся средств. При исследовании эффектов морального риска и негативного отбора эти условия были различны. При рассмотрении морального риска предполагалось, во-первых, постоянное соотношение между собственным и привлеченным капиталом банка, и, во-вторых, пропорциональное соотношение между ставками привлечения и размещения. При анализе негативного отбора была задана постоянной разность между ставками. То есть, при анализе ситуации морального риска, налагались константные ограничения на количество привлеченного капитала, и исследовалась игра банков при изменяющемся параметре разницы ставок привлечения и размещения. При рассмотрении негативного отбора – наоборот, фиксировалась разница ставок, и считалось, что банки конкурируют только за объем привлеченных вкладов. Вопрос о том, как при сделанных допущениях соотносятся между собой выводы, будет обсужден немного ниже, после рассмотрения остальных предположений. Для отрицательного отбора был рассмотрен вопрос об условиях устойчивости состояния рынка сбережений, что может быть положено в основу динамической модели. Для исследования же динамики эффекта морального риска оказалось необходимым совместное рассмотрение двух эффектов.

Следующее существенное ограничение модели – для индивидуального инвестора исключена возможность разделения своего вклада между многими банками. Этот вопрос оказался достаточно сложным, что признается и другими исследователями (например [165, с.43] приводит ряд доводов, почему допустимо исключение случая диверсификации вкладов), и требует отдельного исследования.





Наконец, четвертое существенное, сравнительно с начальной постановкой задачи, – рассмотрение только одного из четырех видов неопределенности, а именно недооценки вкладчиком зависимости риска от ставки, что было уже обсуждено в главе 1, при формулировании условий задачи.

Теперь рассмотрим совместно построенные модели морального риска и отрицательного отбора. Исследовались они раздельно и предположения делались при этом различные. При отказе от этих противоположных для двух случаев допущений анализ задачи существенно усложняется. Так как исследование общей модели пока не проведено, естественно сопоставить различия частных моделей и обсудить взаимодействие эффектов на качественном уровне. Следует отметить, что главное отличие между двумя описанными ситуациями заключается в том, что в модели отрицательного отбора вкладчик получает то, что выбирает, банк не имеет возможности предложить одно, а дать другое, но вкладчик неадекватно информирован.

В случае морального риска банк может изменить свою стратегию после выбора вкладчика, который о первоначальных условиях информирован, а при их изменении узнает об этом с опозданием, и сменить свою стратегию уже не может. В первом случае активность банка условиями модели сильно сужена, а вкладчика – сохранена, во втором случае – наоборот. То есть в модели риска мы исследовали преимущественно поведение банка, а для отрицательного отбора – поведение вкладчика. Проведем параллельное сопоставление двух моделей.

Таблица 1. Сравнение моделей эффектов морального риска и отрицательного отбора Моральный риск Отрицательный отбор Количество собранных вкладов у Целевая функция банка зависит банка фиксировано, и он об этом не только от количества собранных заботится вкладов, и банки конкурируют только за эту величину Целевая функция банка зависит Разница между ставками размещетолько от завышения ставки разме- ния и привлечения фиксирована и щения на целевую функцию банков не влияет Активность вкладчика ограничена, Активность банка ограничена, банка – сохранена вкладчика – сохранена Банк может изменить свою страте- Вкладчик получает то, что выбрал, гию после выбора вкладчика но неверно информирован об условиях контракта Рассматривается однократная си- Рассматривается множество устойтуация, один контракт чивых состояний рынка, его равновесие Вкладчик взаимодействует с кон- Вкладчик имеет дело с рынком банкретным банком ковских услуг На качественном уровне можно сказать, что действие двух эффектов при отсутствии страхования направлено в одну сторону, но для оценки значимости каждого из них необходимо исследование более сложной модели. Необходимо будет отказаться от ограничений на объем собираемых вкладов в одном случае, и на разницу между ставками – в другом. При этом на место ограничивающих условий для одной модели должны быть поставлены результаты исследования дополняющей ее части.

Таким образом, неопределенность в информированности вкладчика о параметрах сберегательного контракта влияет как на поведение банков, вызывая эффект морального риска, так и на самих вкладчиков, что проявляется в ситуации отрицательного отбора. Оба этих фактора ведут к повышению рискованности в банковской системе сравнительно с оптимальным для инвесторов уровнем. Стремление банка к большему риску определяется тем, что он, оперируя привлеченным капиталом, сравнительно с индивидуальным инвестором, получает большую процентную ставку на свой капитал, и, следовательно, ради этой ставки, больше стремится к риску, чем, если бы вкладывал собственные средства. Вкладчик же, будучи неинформированным об уровне риска, не имеет возможности своевременно отреагировать на действия банка.

Увеличивающее риск поведение вкладчиков (отрицательный отбор), обуславливается тем, что они могут адекватно оценивать средний по рынку уровень риска банковских предложений, но недооценивают значимость отклонений от нее, сравнительно со значимостью отклонений в процентных ставках. Это означает, что рискованность самых надежных банков переоценивается, а самых рискованных банков – недооценивается. При этом средняя величина рисков по всей банковской системе устанавливается на более высоком уровне, чем это было бы при адекватной информированности инвесторов. Несмотря на то, что выбор уровней рисков определяется банками, оплата этих более высоких рисков ложится на вкладчиков. Наиболее осторожная их часть уходит с рынка коммерческих банковских сбережений, а наиболее рискованная (в данном случае рискованность субъекта складывается из естественной склонности к риску и из недооценки риска сравнительно со ставкой), если она достаточно велика, то участвуя в сберегательном процессе, то выходя из него, может выводить весь рынок из состояния равновесия, создавая опасность разрушительных колебаний и всеобщих банковских кризисов, как это описано в разделе 2.1.8. Так как оба эффекта, ведущие к повышению рисков, и, в конечном счете, к недоверию и оттоку денег из всей банковской системы, имеют в качестве своей причины неопределенность относительно уровня риска для инвесторов (и, значит, неадекватность оценок рисков), то для привлечения средств этих инвесторов необходимо построение механизма, уменьшающего указанную неопределенность.

Pages:     | 1 |   ...   | 7 | 8 || 10 | 11 |   ...   | 15 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.