WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 15 |

Утверждение 19. Пусть Rmax – максимально приемлемый риск для случая без страхования, и R max – для случая страхования с фиксированной долей страховой выплаты от страховой суммы. Тогда:

R max (1+0 ) (55) <.

Rmax (1+0 ) Доказательство. Приводится в приложении.

3.1.4.3. РАСЧЕТ ЧИСЛОВОГО ПРИМЕРА Приведем пример расчета для конкретных числовых параметров модели, выполненный в программе Advanced Grapher 2.07. Параметры модели выбирались исходя из соображений наглядности получаемых графиков.

Некоторые из них выглядят несколько неестественными (очень большой масштаб величин по оси, параметр оценки вкладчиком зависимости риска от ставки c2>1), но благодаря этому на рисунках становится очевидной структура семейств функций СуВ и КРП для различных значений. Поскольку пример приводится для демонстрации возможностей и простоты расчетов по предлагаемой модели, а не как исследование конкретных данных из практики, то эти недостатки допустимы.

Числовые значения параметров: 0=0.3, h=0.1, =1/3, c2=5/3, {0, 0.1, 0.5, 1}.

Значения функций:

W() = 0.1(–0.5);

W () = (–0.3)/6+c2;

S(,) = 0.5(1+)–1–0.51/3(1+)2/3;

3 1+ - 1+ Q(,1,) = ;

1+1 - 1+ - 1. Q(,0,) =.

3 1.3 - Рис. 18. Расчет смещения субъективно оптимальных выборов при введении страхования На рисунке 18 показаны функции S(,=0), S(,=0.1), S(,=0.5), S(,=1), W(). Результаты расчетов субъективно оптимальных выборов:

0 0.1 0.5 1.17 2.52 4.12 5.1+* 17 152 312 *, % R* 0.09 0.22 0.38 0.Вероятность неудачи, 8 18 28 % Расчет оценки R* 0.09 0.18 0.26 0.Характерно, что уже при 10-процентном страховании суммы вклада склонность к завышению риска достаточно сильна.

Рассмотрим уровень максимально приемлемых рисков. Чтобы сравнить силу эффектов от повышения субъективно оптимальных выборов всех вкладчиков и от появления на рынке новых, более рискованных участников, рассчитаем параметр c 2 для вкладчика, субъективно оптимальный выбор которого совпадает с максимальным приемлемым при отсутствии страхования, и рассчитаем смещение его оптимальных точек для разных.

(R * +1) R * +2.~ =0 = c2 = = = = 0.56, h(1 + * ) 0.3(1 + * ) 0.3 12. =0 = Sc () = 0.17 (1 + ) – 1.

Рис. 19. Расчет повышения максимально приемлемых выборов при введении страхования На рисунке 19 показаны функции Sc (,=0), Sc (,=0.1), Sc (,=0.5), Sc (,=1), Q(,0.3,=0), Q(,0.3,=0.1), Q(,0.3,=0.5), Q(,0.3,=1), W().

Результаты расчетов повышения максимально приемлемых выборов при введении страхования:

0 0.1 0.5 11.65 36.05 137.39 961.1+max 1065 3505 13659 max, % Rmax 1.13 3.57 13.71 96.Вероятность неудачи, % 63 78 93 Расчет оценки Rmax 1.13 1.97 4.14 13.11.65 20.43 31.46 41.1+* c 1065 1943 2046 *, % c R* 1.13 2.01 3.12 4.c Вероятность неудачи для 63 67 76 R*, % c 0 0.1 0.5 По данным таблицы видно, что вкладчик, наиболее склонный к риску из присутствующих на сберегательном рынке в условиях без страхования, при его введении поднимает уровень риска своего выбора с 63-процентной вероятности неудачи до 80 %. В то же время максимально приемлемый риск поднимается с того же уровня до 99 % неудачи. Эти выборы, от 20 % до 1 % успеха, делают те инвесторы, которых побуждает придти на рынок введение системы страхования, и, если таких «скрытых» в первоначальных условиях окажется достаточно много, то общая рискованность банковской системы может неожиданно сильно возрасти. Это означает, что при маркетинговых исследованиях предпочтений вкладчиков в условиях вводимой системы страхования, помимо измерения предпочтений имеющихся участников, особенно важным вопросом является верная оценка потенциала этих наиболее рискованных участников, которые придут на рынок.

Из данных обеих таблиц также видно, что сделанные в предыдущем разделе аналитические оценки R* и Rmax достаточно грубы.

3.1.4.4. ВЕРХНЯЯ ОЦЕНКА ВЕЛИЧИНЫ РИСКА ДЛЯ НЕСКОЛЬКИХ ТИПОВ ВКЛАДЧИКОВ В предыдущих разделах рассмотрен вопрос о завышении риска для одного типа вкладчиков, теперь, опираясь на полученные результаты, рассмотрим нелинейную систему уравнений (53):

c2(l)h c2(l )h ~ = (1+ * ) -1- (1+ * )1-, l = 1,..., L;

R *(ll) (l) (l) ~ R * -R * = c2(l)h( * - * ), l = 1,..., L;

(ll) cp (l) cp L * = * ;

cp dl (l) l= R * = h( * -0 ).

cp cp Будем считать, что мы имеем решение уравнений (50) для одного типа вкладчиков при l = 1,..., L:

~ c2h c2h R * = (1+ * ) -1- (1+ * )1- = h( * -0 ).

(l) (l) (l ) (l) Сформулируем и докажем утверждение, связывающее решения этих уравнений.

Утверждение 20. Пусть (*ср, R*ср) определяются решением системы L L ~ ~ ~ ~ (53), ( *(l), R *(l)) – решения уравнений (50), *ср = *, R *ср = R *.

dl (l) dl (l) l=1 l=Тогда справедлива оценка:

(56) *ср *ср, R*срR *ср.

Доказательство. Приводится в приложении.

Доказано, что средняя (по риску и ставкам) частных информационных равновесий для отдельных типов вкладчиков больше или равна значению информационного равновесия для всей их совокупности.

3.1.5. Общий ход игры банков и вкладчиков В предыдущем разделе получена зависимость увеличения риска от доли страховой выплаты при предположении, что она фиксирована. В большинстве систем страхования вкладов [78; 103; 116] предполагается, что крупные вкладчики с большими размерами депозитов могут самостоя тельно оценивать рискованность банков, поэтому обычно доля выплат убывающим образом зависит от величины вклада: i = (xi). Такой вид зависимости преследует также социальные и иные цели [35]. В наиболее развитых системах страхования вводится ступенчатая шкала зависимости доли выплат от величины вклада. Например, в проекте российского Закона о страховании вкладов, рассматривавшегося еще до его принятия, предполагалась следующая шкала. При потере часть вклада, не превышающую 2000 рублей компенсировать на 100 %, от 2000 до 20000 – на 90 %, от 20000 до приблизительно 150000 рублей – на 50 % (общая сумма компенсации – не более 80000 рублей), часть вклада, превышающую верхний уровень – не компенсировать [96]. Таким образом, по данному проекту (были и другие варианты) шкала состояла из четырех уровней, и значение функции выплат было:



1, x 2000;

2000 x - (x) = 1 + 0.9, 2000 < x 20000;

x x min12000 0.9 20000 - 2000 0.5 x - 20000 80000 20000.

+ +,, x x x x x В данной модели рассматриваются в основном мелкие вкладчики, но, тем не менее, необходимо предусмотреть возможность контроля за уровнем риска со стороны крупных. Рассмотрение возможности мониторинга банка крупным вкладчиком достаточно сложна, так как возможны различные степени и способы уменьшения неопределенности в информации о банке. Вопрос об оптимальном уровне информированности субъекта в зависимости от полезности добываемой информации и ее стоимости, с учетом наличия как общедоступных открытых источников, так и возможностей приобретения конфиденциальной закрытой информации, рассмотрен в [39]. Подробное рассмотрение частной (для построенной модели) ситуации политики крупного инвестора предполагает отдельное исследование.

Поэтому ограничимся для данного случая самым простым приближением.

Будем считать, что, потратив на контроль за состоянием банка некотоую фиксированную сумму xкон, вкладчик может полностью исключить для себя риск потери (своевременно перевести свои средства при возникновении угрозы банкротства и т.п.). Сведя все формы контроля к этому единственному способу, рассмотрим ту величину вклада x, при которой он становится выгодным.

P uВ((1+) x – xкон) + (1 – P) uВ(x – xкон) > P uВ((1+) x), P ((1+) x – xкон) + (1 – P) (x – xкон) > P ((1+) x), ((1+) x – xкон) + R (x – xкон) > ((1+) x).

Отсюда видно, что нижняя граница величины вклада xкр, выше которого субъект будет проводить мониторинг банка находится в узком промежутке:

((1+) xкр – xкон) + R (xкр – xкон) = ((1+) xкр), 1 (1 + R) xкон (1 + R) xкон < xкр <.

1 (1 + )(1 + (1 + R) ) 1 + + (1 + R) Рассмотрим поведение банковской системы в целом при введении системы страхования вкладов в рамках модели негативного отбора. Если мы знаем распределение всей совокупности вкладчиков по размеру вкладов x, уровню осторожности, склонности занижать зависимость риска от ставки c2, а также критический уровень xкр, выше которого вкладчик начинает осуществлять контроль над банком, то по формулам утверждений 4, 17-20 можно провести расчеты, такие как в числовом примере, и определить, как сместится распределение всей совокупности вкладов по линии ДПБ. Если принять предположение в рамках модели отрицательного отбора, что банки подстроятся под изменение спроса и станут проводить соответствующую ему более рискованную политику, то уровень рисков во всей банковской системе повторит это смещение субъективно оптимальных выборов вкладчиков.

При прогнозировании реакции рынка на введение страхования требуется выяснить распределение множества вкладчиков по трем указанным параметрам x,, c2. При проведении маркетингового исследования естественно разделить все множество вкладчиков на сектора по величине вкладов и внутри каждого сектора провести исследование по распределению находящихся в нем инвесторов по параметрам и c2. После этого можно будет оценить изменение субъективно оптимальных выборов риска и ставки в каждом секторе, в зависимости от введения тех или иных условий и схем страхования. При этом особое внимание следует уделить той части вкладчиков, которые до введения страхования не участвуют в процессе образования банковских коммерческих сбережений, и их распределению по трем параметрам. Это важно, так как именно эти владельцы мелких и мельчайших сбережений, приходя на рынок в значительном количестве, могут составить значительный потенциал увеличения рисков (смотри расчет числового примера).

С учетом верхнего уровня x>xкр, в результате маркетингового исследования мы должны получить распределение множества вкладов по секторам по величине и внутри них по параметрам отношения к риску. Итоговое изменение поведения частных инвесторов наиболее сильно будет зависеть от величины их вклада: сектор мелких вкладов, таких, для которых (x) = или близко к 1, даст наибольшее увеличение рискованности, поведение же в верхнем секторе крупнейших вкладчиков, осуществляющих контроль над банковскими рисками, не изменится. Имея такие данные, и оценивая по ним ожидаемое изменение рискованности в поведении вкладчиков по секторам, центр может моделировать увеличение рискованности всей банковской системы и подбирать наилучшие для себя параметры системы страхования.

3.1.6. Российский Закон о страховании вкладов Федеральный закон «О страховании вкладов физических лиц в банках Российской Федерации» был опубликован в «Российской газете» 27 декабря 2003 года [117; 113]. История его создания отражена в финансовой периодической печати ([96; 47] и другие статьи).





Основные особенности закона, определяющие его параметры с точки зрения модели следующие. Возмещение по вкладам выплачивается в размере 100 %, но не более 100 тысяч рублей, если страховой случай наступил в нескольких банках – возмещение исчисляется по каждому банку отдельно (статья 11). В страхуемый вклад включаются начисленные проценты (статья 2). Страховые взносы едины для всех банков, ставка устанавливается советом директоров Агентства по страхованию вкладов (статьи 35, 36).Статьи 44-47 определяют требования к участвующим в системе страхования банкам и санкции за их невыполнение.

В модели не предусматривалась возможность для вкладчика размещать свои сбережения одновременно в нескольких банках из-за сложности этого случая, но при анализе российского Закона о страховании вкладов, в силу того, что вклады одного лица в разных банках страхуются независимо друг от друга, этот случай здесь необходимо рассмотреть. Если вся сумма вкладов одного человека в разных банках рассматривается при страховании как единый вклад, то, по предварительному нестрогому исследованию такой диверсификации, эффективное уменьшение потерь в функции полезности для случая без страхования достигается при размещении суммы вкладов в небольшом количестве банков (2-3, может быть 4). При дальнейшем увеличении числа выбранных банков на один, дополнительное увеличение полезности убывает экспоненциально и очень быстро становится ничтожно малым. При введении страхования вклада одного лица независимо от распределения его по различным банкам, оптимальное количество банков выбранных одним лицом может увеличиться еще на 1. В заданных же российским Законом условиях для вкладчика становится ес тественным разместить по всем банкам вклады размером по 100000 рублей каждый (или, точнее, 100000/(1+)).

Пусть на рынке имеются m банков. Тогда оптимальной стратегией вкладчика будет разложить m 100000 рублей порциями по 100 тысяч в каждый банк, а превышающую этот уровень сумму распределить так же, как и в случае без страхования.

В соответствии с такой оптимальной стратегией все множество вкладов разбивается по размеру на 4 сектора. 1) Мелкие вклады, размером тысяч рублей или меньше. 2) Средние вклады, величиной от 100 тысяч до m 100 тысяч рублей. 3) Крупные, от m 100 тысяч рублей до xкр, при этом «поведение» двух частей такого вклада, до уровня m 100 тысяч и выше, будет различным. 4) Крупнейшие, превышающие xкр.

Стратегия банка будет зависеть от того выбранного сектора, за сбережения которого этот банк собирается конкурировать. Так как владельцы мелких вкладов ориентируются исключительно на процентную ставку, то за этот сектор конкуренция идет исключительно посредством высоких ставок, с полным исключением фактора риска.

Владельцы средних вкладов упорядочивают множество банков по убыванию процентной ставки и, разделяя имеющуюся у них сумму на части размером по 100 тысяч рублей, распределяют их между первыми банками, расположенными в таком порядке. В этом секторе, с ростом размера сбережений, от минимального к максимальному, борьба за вклады между банками постепенно убывает, причем исключительная ориентация на процентную ставку сохраняется.

Для крупных вкладов надо отдельно рассмотреть часть, не превышающую уровень от m 100 тысяч рублей, подпадающую под страхование, и остальную. За первую часть конкуренции между банками не будет вообще, так как она распределяется между всеми участниками поровну. При размещении второй части владельцы ориентируются как на ставку, так и на риск, но не имеют возможностей адекватной оценки последних. При этом, если существует недоверие к банковской системе, то эта потенциальная часть вкладов может остаться за ее пределами. На поведение этих сумм рассматриваемая система страхования прямо влиять не может, со временем возможно лишь косвенное влияние, через увеличение надежности банков и последующее увеличение доверия к ним.

Наконец, крупнейшие сбережения, позволяющие контролировать уровень риска банка, предполагают адекватную осведомленность инвесторов.

Следовательно, банк, чтобы привлечь эти вклады, должен ориентироваться как на ставку, так и на риск, и вести политику с той степенью осторожности, которая удовлетворит крупного клиента.

Итак, все множество вкладов разделяется на сектора, соответствующие секторам рынка вкладчиков. Наибольший интерес будут представлять сектора мелких и крупнейших вкладчиков, за них будет идти наиболее острая конкуренция. Банки, ориентирующиеся на мельчайших вкладчиков, будут проводить наиболее рискованную политику, и предлагать наибольшие ставки. Те банки, которые выбрали сектор крупнейших сбережений, будут проводить адекватную интересам осведомленных клиентов осторожную политику. Верхняя часть сектора средних вкладчиков и крупные вклады в части, не превышающей с учетом диверсификации подлежащий страхованию порог, будут смягчать конкуренцию, открывая доступ к сберегательным ресурсам более слабым участникам, а также стимулируя всех участников к максимальному расширению сети филиалов и облегчая проникновение их на региональные рынки. Общее положение на рынке будет определяться соотношением и размером перечисленных секторов потенциально возможных сбережений, которые можно выяснить при помощи соответствующего маркетингового исследования.

Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 15 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.