WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 28 | 29 || 31 | 32 |   ...   | 33 |

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом. Главные из них следующие:

1. Доза внешнего облучения пропорциональна интенсивности излучения времени действия.

2. Интенсивность излучения от точечного источника пропорциональна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорционально квадрату расстояния.

3. Интенсивность излучения может быть уменьшена с помощью экранов.

Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности: уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (защита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (защита экранами).

Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е.

пропорционально сокращает мощность излучения. Однако требования технологического процесса часто не позволяют сократить количество радиоактивного вещества в источнике, что ограничивает на практике применение этого метода защиты.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

Защита расстоянием — достаточно простой и надежный способ зашиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений являются материалы с большим Z, например свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

По своему назначению защитные экраны условно разделяются на пять групп:

1. Защитные экраны-контейнеры, в которые помещаются радиоактивные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

2. Защитные экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации.

3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

4. Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для защиты помещений, в которых постоянно находится персонал, и прилегающей территории.

5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

Защита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками ионизирующих излучений разделены на 3 класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.

Способы зашиты персонала при этом следующие:

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размещаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных специально выделенных комнатах.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.



6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности. Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы — службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

Службы выполняют все виды контроля на основании действующих методик, которые постоянно совершенствуются по мере выпуска новых видов приборов радиационного контроля.

Важной системой профилактических мероприятий при работе с источниками ионизирующих излучений является проведение радиационного контроля.

Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

— контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нейтронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

— контроль за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

— контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

— контроль за величиной выброса радиоактивных веществ в атмосферу;

— контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

— контроль за сбором, удалением и обезвреживанием радиоактивных твердых и жидких отходов;

— контроль уровня загрязнения объектов внешней среды за пределами предприятия.

Тест 1. Во внесистемных единицах энергию частиц ионизирующего излучения измеряют:

а) в герцах (Гр);

б) в электрон – вольтах (эВ);

в) в кулонах на килограмм (Кл/кг).

2. К корпускулярному ионизирующему излучении. Относятся:

а) -частицы, -частицы, нейтроны, протоны;

б) -частицы, -излучения, нейтроны, протоны;

в) -частицы, и -частицы, нейтроны, протоны.

3. -излучения – это:

а) поток электронов;

б) поток позитронов и нейтронов;

в) поток частиц, ядер атома гелия.

4. Единица измерения мощности экспозиционной дозы во внесистемных единицах является:

а) рентген (Р);

б) рентген/час (Р/ч);

в) рад.

5.Единицей измерения мощности полученной СИ является:

а) Грей в секунду (Гр/с); дозы в системе б) Зиверт в секунду (Зв/с);

в) Рад в секунду (Рад/с).

6.Единицей измерения мощности эквивалентной дозы в системе СИ является:

а) Зв/с;

б) Рад/с;

в) Гр/с.

7. Единицей измерения удельной активности вещества в системе СИ является:

а) Беккерель на килограмм (Бк/кг);

б) Беккерель на метр квадратный (Бк/М2);

в) Беккерель (Бк).

8.Дозиметры это:

а) приборы, предназначенные для определения количества радиоактивных веществ;

б) приборы для измерения мощности экспозиционной или поглощенной дозы;

в) для регистрации и анализа энергетического спектра излучающих радионуклидов.

Вопросы для повторения 1. Классификация ионизирующих излучений.

2. Природа ионизирующих излучений.

3. Биологическое действие ионизирующих излучений.

4. Дозиметрические величины и единицы их измерения.

5. Экспозиционная доза рентгеновского и излучения.

6. Поглощенная и эквивалентная доза.

7. Коллективная эффективная эквивалентная доза.

8. Источники ионизирующих излучений.

9. Методы измерения ионизирующих излучений.

10. Приборы для измерения ионизирующих излучений.

11. Нормирование радиационной безопасности.

12. Основные требования НРБ-99.

13. Категории облучаемых лиц.

14. Защита от ионизирующих излучений.

15. Технические средства защиты.

16. Медицинские средства защиты от ионизирующих излучений.

РАЗДЕЛ VI НЕИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ 6.1. Лазерное излучение Это излучение формируется в оптических квантовых генераторах (лазерах) и представляет собой оптическое когерентное излучение, характеризующееся высокой направленности и большой плотностью энергии. Главный элемент лазера, где формируется излучение, — активная среда, для образования которой используют: воздействие света нелазерных источников, электрический разряд в газах, химические реакции, бомбардировку электрическим пучком и другие методы «накачки». Активная среда (элемент), расположен между зеркалами, образующими оптический резонатор. Активной средой лазера может быть твердый материал (рубины, стекло, активированное неодимом, аллюмоиттриевый гранат, пластмассы), полупроводники (Zn, S, ZnO, СаSe, Те, РbS, GаАs, и др.), жидкость (с редкоземельными активаторами или органическими красителями), газ (Не-Ne, Аг, Кr, Хе, Ne, Не-Сd, СО2 и др.) и др. Существуют лазеры непрерывного и импульсного действия.





Лазеры получили широкое применение в научных исследованиях (физика, химия, биология и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (связи, локации, измерительная техника, география), при исследовании внутренней структуры вещества, разделении протонов, термоядерном синтезе, термообработке, сварке, резке, при изготовлении отверстий малого диаметра - микроотверстий и др.

Величина генерируемого лазером электромагнитного излучения составляет: в области рентгеновского диапазона 3.103...3.10-7 мкм, ультрафиолетового 0,2...0,4 мкм, видимого света 0,4...0,75 мкм, ближнего инфракрасного 0,75...1,4 мкм, инфракрасного 1,4...102 мкм, субмиллиметрового 102...103 мкм.

Биологическое действие лазерного излучения зависит от энергии излучения Е, энергии импульса ЕИ, плотности мощности (энергии) Wp (Wе). времени облучения t, длины волны длительности импульса частоты повторения импульсов f потока излучения Ф, поверхностной плотности излучения Еэ интенсивности излучения I.

Под воздействием лазерного излучения нарушается жизнедеятельность, как отдельных органов, так и организма в целом. В настоящее время установлено специфическое действие лазерных излучений на биологические объекты, отличающееся от действия других опасных производственных физических и химических факторов. При воздействии лазерного излучения на сплошную биологическую структуру (например, на организм человека) различают три стадии: физическую, физико-химическую и химическую.

Рис. 56 Области применения лазеров в зависимости от требуемой мощности лазерного излучения Таблица Энергетические характеристики излучения Характеризуемый Показатель Обозначе Единица объект ние измерения Пучок лазерного Энергия лазерного излучения Е Дж излучения Энергия импульса лазерного излучения ЕИ Дж Мощность лазерного излучения Вт Плотность энергии (мощности) лазерного We, Wp Дж/см излучения (Вт/см2) Поле излучения Поток излучения Ф, F, Р Вт Поверхностная плотность потока излучения EЭ Вт/м Интенсивность излучения I, S Вт/мИсточник Излучательная способность RЭ Вт/мизлучения Энергетическая сила излучения IЭ Вт/ср Энергетическая яркость Lе Вт/м2 ср Приемник Облученность (энергетическая излучения освещенность) Ee Вт/мЭнергетическое количество освещения He Дж/мНа первой стадии (физической) происходят элементарные взаимодействия излучения с веществом, характер которых зависит от анатомических, оптико-физических и функциональных особенностей ткани, а также от энергетических и пространственных характеристик излучения и, прежде всего, от длины волны и интенсивности излучения.

На этой стадии происходит нагревание вещества, преобразование энергии электромагнитного излучения в механические колебания, ионизация атомов и молекул, возбуждение и переход электронов с валентных уровней в зону проводимости, рекомбинация возбужденных атомов и др.

Рис. 57. Факторы, определяющие биологические изменения при лазерном облучении При воздействии непрерывного лазерного излучения преобладает в основном тепловой механизм действия, в результате которого происходит свертывание белка, а при больших мощностях — испарение биоткани.

При импульсном режиме (с длительностью импульсов меньше 10-2 с) механизм взаимодействия становится более сплошным и приводит к преобразованию излучения в энергию механических колебаний среды, в частности ударной волны. При мощности излучения свыше 107 Вт и высокой степени фокусировки лазерного луча возможно возникновение ионизирующих излучений.

На второй стадии (физико-химической) из ионов и возбужденных молекул образуются свободные радикалы, обладающие высокой способностью к химическим реакциям.

На третьей стадии (химической) свободные радикалы реагируют с молекулами веществ, входящих в состав живой ткани, и при этом возникают те молекулярные повреждения, которые в дальнейшем определяют общую картину воздействия лазерного излучения на облучаемую ткань и организм в целом.

Лазерное излучение представляет опасность главным образом для тканей, которые непосредственно поглощают излучение, поэтому с позиций потенциальной опасности воздействия и возможности защиты от лазерного излучения рассматривают в основном глаза и кожу.

Известна высокая чувствительность роговицы и хрусталика глаза при воздействии электромагнитных излучений. Способность оптической системы глаза на несколько порядков увеличивать плотности энергии видимого и ближнего инфракрасного диапазона на глазном дне по отношению к роговице, наиболее чувствительны к воздействию лазерного излучения.

Длительное действие лазерного излучения видимого диапазона на сетчатку глаза (не намного меньше порога ожога) может вызвать необратимые изменения в ней, а в диапазоне близкого инфракрасного излучения может привести к помутнению хрусталика глаза. Клетки сетчатки, как и клетки центральной нервной системы, после повреждения не восстанавливаются.

Действие лазерного излучения на кожу в зависимости от первоначальной поглощенной энергии приводит к различным поражениям: от легкой эритемы (покраснения) до поверхностного обугливания и, я конечном итоге, образования глубоких дефектов кожи.

Pages:     | 1 |   ...   | 28 | 29 || 31 | 32 |   ...   | 33 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.