WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 6 | 7 || 9 |

Получение сополимеров, в молекулярные цепи которых входят легко разрушающиеся под действием микроорганизмов химические связи. Это достигается методами сополимеризации природных, легко деструктируемых и синтетических соединений. Синтезирован полиуретан, содержащий низкомолекулярную целлюлозу или амилозу. Методами привитой сополимеризации изготовлены сополимеры полиуретана с крахмалом и целлюлозой, осуществлен синтез сополимера, состоящего из полиэтилакрилата и желатина. Однако до настоящего времени не решена проблема деструкции синтетического остатка, образующегося после полного разрушения природного полимера.

Создание композиций, содержащих кроме высокомолекулярной основы органические наполнители (крахмал, целлюлозу, амилозу, амилопектин, декстрин и др.), являющиеся питательной средой для микроорганизмов. Наиболее дешевым методом получения композиций «полимер – наполнитель» является прямое смешивание компонентов. В этом случае наполнитель присутствует в пластике в виде конгломератов размером 10…100 мкм. Величина макрочастиц определяется энергией межфазного взаимодействия и сдвиговым напряжением в процессе экструзии. Полученный из такой смеси материал является частично биоразлагаемым, так как матрица синтетического полимера в лучшем случае распадается на кусочки. При смешивании наполнителя с синтетическим полимером на микроуровне (размер частиц менее 10 мкм) компоненты смеси образуют взаимопроникающую сетчатую структуру, которая обеспечивает наполненному полимеру эффект дополнительной деструкции. Как известно, наполнитель может скапливаться в менее упорядоченных областях полимера. Поэтому при уничтожении наполнителя бактериями облегчается доступ микроорганизмов к менее стойкой по отношению к биодеструкции части полимера. По сравнению с термопластами на основе пластифицированного крахмала они удачно сочетали технологичность и высокие эксплуатационные характеристики, присущие синтетическому компоненту, со способностью к биодеструкции, обусловленной наличием в их составе природного полимера (крахмала).

Чаще всего крахмалом модифицировали полиэтилен – пластик, наиболее востребованный не только в индустрии упаковки, но имеющий широкий диапазон использования в пищевой и легкой промышленности, медицине и других отраслях. Для получения термопластичных смесей «полимер–крахмал» полисахарид обычно пластифицировали глицерином и водой. Смешивание компонентов осуществлялось в экструдере при температуре 150 °С. Биоразложение композиционного материала, полученного по такой технологии, начиналось с поверхности пленки, обогащенной крахмалом. Для интенсификации биодеструкции в состав композиций вводили фотосенсибилизаторы или самоокисляющиеся добавки, вызывающие деструкцию полимерной цепи с образованием участков, достаточно малых для того, чтобы быть усвоенными микроорганизмами.

Среди коммерческих продуктов, изготовленных на основе композиций «полиэтилен–крахмал» следует назвать разработанный фирмой «Archer Daniels Midland» (США) концентрат PolycleanTM для производства биоразлагаемых пленок. Кроме крахмала (40 %) в его состав входит окисляющая добавка, действующая как катализатор биодеструкции крахмала не только на свету, но и в темноте. Фирма «St. Sawrence Starch» (США) предлагает концентрат EcostarplusTM. Он содержит самоокислитель и фотодеградант (органометаллические соли), который синергически взаимодействует с биоразрушающим компонентом – крахмалом. Материал используется как добавка при изготовлении мешков под компост.

Крахмал плохо совместим с неполярным полиэтиленом, поэтому современные исследования по улучшению сродства природного и синтетического полимеров проводятся в двух направлениях:

1) получение смесей крахмала с сополимерами этилена или другими, более полярными полимерами;

2) модифицирование крахмалов с целью повышения их совместимости с полиэтиленом.

Наиболее часто в смесях с крахмалом используют сополимеры этилена с винилацетатом (СЭВА) или продукты омыления ацетатных групп в этих сополимерах. Изучены также композиции крахмала с сополимером этилена и пропилена, полистиролом. Экструзией получены смеси крахмалов восковой или нативной кукурузы, а также высокоамилозного крахмала марки Hylon с сополимером этилена и винилового спирта (ЭВС, 56 % звеньев СН2СH(ОН)).

Хорошо формуются композиции крахмала с сополимером этилена, пропилена и малеинового ангидрида, а также с сополимером полистирола и малеинового ангидрида. Они обладают удовлетворительными механическими характеристиками и способны к биоразложению под действием спор грибков Penicillium fimiculogum.

В отношении улучшения сродства с неполярными полимерами типа полиэтилена и полипропилена перспективными являются эфиры крахмала и высших жирных кислот. Причем эфирные группы с длинными алкильными радикалами не только увеличивают совместимость крахмала с неполярным синтетическим компонентом, но и действуют как внутренние пластификаторы. Однако скорость биодеградации таких композитов по сравнению со смесями «полиэтиленнемодифицированный крахмал» меньше. Из смеси полиэтилена высокого давления и крахмала, модифицированного введением в его молекулы холестериновых остатков, получены раздувные пленки. По сравнению с материалами из нативного крахмала пленки более однородны и характеризуются большей прочностью. Их биодеградация в компосте проходит быстрее, очевидно, за счет разрыхления структуры крахмала крупными холестериновыми фрагментами. Наиболее известным и крупнотоннажно выпускаемым синтетическим продуктом, содержащим в качестве активного биоразлагаемого наполнителя крахмал, является материал Mater-BiTM (марки AT 05H, AF 05H, А 105Н, АВ 05Н, АВ 06Н, AF 10H). Его промышленное производство осуществляет фирма Novamont S.p.A (Италия). Композит получают на основе смеси крахмала с поликапролактоном или ЭВС. Он высоко экономичен, подвергается вторичной переработке. Стоимость – 60 тыс. итальянских лир за 1 кг. Разлагается в почве как в аэробных, так и в анаэробных условиях без выделения вредных продуктов и твердых остатков за 60 суток. Этот материал способен также разлагаться в воде и компосте. В водной среде быстро вымывается пластификатор. Основные способы переработки (в зависимости от марки) – экструзия (в том числе с последующим раздуванием заготовки), термоформование, литье под давлением, штамповка. Как одно из новых направлений решения проблемы пластмассовых отходов является создание второго поколения пластиков – биодеградабельных, способных разлагаться в природных условиях под действием микроорганизмов до безвредных составляющих.

В связи с этим определяются пути создания биодеградабельных полимеров:

- синтез биодеградабельных полимеров с помощью микроорганизмов (биополиэфиры, биополисахариды);

- биоразлагаемые полимеры на основе природных веществ (природные полисахариды, смеси ПЭ с крахмалом);

- получаемые методом химического синтеза (синтетические полиэфиры).

Такие исследования по получению саморазрушающихся в почве и воде полимеров ведутся в настоящее время главным образом в США, Японии, странах Европы [22].

Получены полубиодеградабельные полимеры путем последовательного вкрапления крахмала в полимерные цепочки. Этот вид полимеров может использоваться для сумок, контейнеров, почтовых упаковок, других целей. В Италии создан первый в мире полностью деградабельный пластик, изготовлен из ПЭ ткани, содержащей пустоты, которые заполнены кукурузным крахмалом (10…50 %). Пластик до окиси углерода и воды в течение полугода разлагается микроорганизмами.

В Австрии на основе крахмала разработаны материалы для производства биодеградабельпых чашек, полотенец, емкостей для яиц, кухонной посуды.

К добавкам, которые сами легко усваиваются микроорганизмами, относятся: крахмал (рисовый, пшеничный, картофельный карбоксиметил-целлюлоза, маниит, лактоза, др.) казеин, дрожжи, мочевина и другие соединения природного происхождения. С их использованием сейчас изготавливают фармацевтические капсупы, которые до сих пор получали из желатина, мешки из крахмальной пленки, которые компостируют вместе с морковной ботвой:

стаканчики разового применения для прохладительных напитков, оберточные материалы для кондитерских изделий, вспомогательные детали упаковки (соединительные колечки, зажимы и пр.) со сроком разложения от трех месяцев до двух лет.

Американская компания JCJ создала в 1990 г. первый в мире биоде-градабельный термопластик биопол. Новый полиэфир образуется путем фермента цепи сахаров бактериями Alcaligenes eutrophus. Однако стоимость этого полимера пока что очень дорогая – 33 доллара за 1 кг.

После пуска ферментационного завода стоимость его начнет снижаться и биопол будет использоваться в производстве пленок, бутылей, упаковочных нетканых материалов. Биопол производится сбраживанием таких видов сельскохозяйственного сырья, как сахар и крахмал. Использование упаковки из биопола, можно беспрепятственно вывозить на действующие свалки, не нарушая при этом экологический баланс. Биопол полностью разлагается в земле под действием грибков и бактерий.

Термопластичный алифатический полиэфир (полигидроксибутилат) так же, как и ПП (точка плавления кристалличность и др.), перерабатывается как обычные термопласты. По мнению специалистов фирмы «JCJ» использование сахара или крахмала для производства биопола оправдано с точки зрения экономики и экологии. Прогнозы экономистов позволяют сделать вывод, что в недалеком будущем цены на сахар снизятся в связи с интенсификацией сельского хозяйства. И даже сегодня производство биопола экономически оправдано в странах, не обладающих запасами нефти для производства пластмасс.

Разработан материал, разлагающийся в воде за 45 с при температуре 25 °С. Он может найти применение для упаковывания химических добавок агротехнического назначения. Поместив упаковку с такими веществами в слегка подогретую воду, сразу получают раствор вещества. Упаковка полностью растворяется и не влияет на свойства удобрений. Аналогичный тип пластмасс получен в Японии в Токийском институте технологии. Этот биопластик синтезируется микроорганизмами и разрушается микроорганизмами, не загрязняет окружающую среду. Учитывая возросший интерес потребителей к биодеградабельным материалам японское правительство утвердило трехлетний проект системы исследований для изучения биодеградабельных полимеров по следующим направлениям: полимерные материалы, произведенные микроорганизмами; создание технологий по утилизации биомассы; разработка технологий но молекулярному конструированию и управляемому получению новых полимерных материалов; биологический поиск и изучение микроорганизмов (аэробных и анаэробных), способных образовывать биодеградабельные полимеры.

Новые полимерные материалы должны удовлетворять требованиям специалистов по охране окружающей среды. С точки зрения рециклинга природных ресурсов биодеградабельные пластмассы будут лишь способствовать ускорению протекания углеродного цикла (рис. 2.6). Выброшенные на свалку или захороненные в почве отходы будут саморазрушаться с выделением CO2, который в конечном счете будет потребляться микроорганизмами для синтезирования новых биодеградабельных материалов.

Связанные полимеры, синтезируемые микроорганизмами.

Полимеры, полученные из био массы Складирование биодеградабельных полимеров после использования Отходы Разложение в окружающей отходов с участисреде ем человека Разрушение, Раз сжигание ложение Рис. 2.6. Идеальный цикл биодеградабельных полимеров в окружающей среде Осуществление рециклинга полимерных отходов позволит высвободить полезные посевные площади от неконтролируемых свалок и улучшить экологическую обстановку региона. Однако организация многоступенчатых способов рециклирования требует больших затрат на отбор и сортировку отходов, которые могут быть значительно сокращены при маркировке пластмассовых изделий в процессе их изготовления.

Попавшие в отходы маркированные недеградабельные изделия после вторичной переработки могут быть вновь использованы для изготовления новых изделий, что даст существенную экономию средств.

Наиболее оптимальным решением проблемы предотвращения полимерных свалок является создание экологически чистых биодеградабельных пластмасс, которым, очевидно, принадлежит будущее. Наибольший прогресс в производстве новых биодеградабельных пластмасс произойдет после создания фундаментальной технологии изготовления полимерных материалов с различными свойствами, основные принципы которой разрабатываются в настоящее время крупнейшими лабораториями и фирмами различных стран.

2.4. СЖИГАНИЕ Сжигать целесообразно только некоторые типы пластмасс, потерявших свои свойства, для получения тепловой энергии. Например, тепловая электростанция в г. Вульвергемтоне (Великобритания) впервые в мире работает не на газе и не на мазуте, а на старых автомобильных покрышках. Осуществить этот уникальный проект, позволяющий обеспечить электроэнергией 25 тыс. жилых домов, помогло английское Управление по утилизации неископаемых видов топлива [23].

3 Рис. 2.7. Схема установки термического обезвреживания твердых полимерных отходов Сжигание некоторых видов полимеров сопровождается образованием токсичных газов: хлорида водорода, оксидов азота, аммиака, цианистых и других соединений, что вызывает необходимость мероприятий по защите атмосферного воздуха. Кроме того, экономическая эффективность этого процесса является наименьшей по сравнению с другими процессами утилизации пластмассовых отходов. Тем не менее, сравнительная простота организации сжигания определяет довольно широкое его распространение на практике.

Типичная технологическая схема сжигания отходов с использованием трубчатой печи представлена на рис.

2.7.

Отходы из бункера-накопителя 1 грейферным захватом 2 через чагрушчиую воронку 3 и загрузочный бункер попадают во вращающуюся печь 6, пуск в работу которой осуществляется при помощи запального устройства 5.

Золошлаковые продукты сжигания из печи поступают и сборник шлака 7, где гасятся и далее эвакуируются транспортером 8. Печные газы поступают в камеру дожигания 9, где обезвреживаются при температуре выше 800 °С в пламени горелки 10. Дымосомом 12 их затем через охладительные устройства 11 котел-утилизатор, водоподогреватель и т.п. и выхлопную трубу 13 направляют в атмосферу. Образующуюся золу 14 4…6 % от массы отходов можно использовать в качестве наполнителя при производстве строительных материалов.

2.5. ЛИНИЯ ПО ПЕРЕРАБОТКЕ ИСПОЛЬЗОВАННЫХ ПЭТФ БУТЫЛОК ИЗ-ПОД НАПИТКОВ В ЧИСТЫЕ ХЛОПЬЯ ПЭТФ ПРОИЗВОДИТЕЛЬНОСТЬЮ 450 – 650 кг/ч На рис. 2.8 показана линия по переработке использованных ПЭТФ бутылок. Питатель пресс-пакетов 1 емкостью 20 м3 вмещает примерно два пресс-пакета полимера. По мере продвижения материала в питателе три вращающихся шнека разделяют спрессованные бутылки и подают их на конвейер предварительной сортировки 2.

Конвейер предварительной сортировки 2 изготовлен из резиновой ленты шириной 760 мм, имеет длину приблизительно 4,5 м и высоту 750 мм. Приводится в движение электродвигателем-вариатором мощностью 0,37 кВт.

Система предварительного измельчения ПЕТФ. Состоит из наклонного конвейера 3, шредера с воздуходувкой 4 и первичной системой отсасывания с пылесборником. Бутылки измельчаются в частицы размером около 2,5 см, воздушный классификатор удаляет этикетки, затем материал подается в флотационную емкость 5.

Флотационная емкость 5 предназначена для удаления полипропиленовых крышечек и прочих загрязнений плотностью ниже 1 г/см3 от ПЭТФ. При загрузке материала в емкость плавучие частицы перемещаются в одну сторону с помощью крыльчатки. ПЭТФ погружается на дно и выгружается из емкости с другой стороны с помощью специального конвейера 6.

Система сепарации 7 предназначена для удаления посторонних частиц, образующихся при предварительном измельчении ПЭТФ бутылок. Представляет собой виброэкран. Посторонние частицы сепарируются от ПЭТФ, который подается на систему отмывки и сушки 8.

Система отмывки и сушки 8 представляет собой многоступенчатую систему вращающихся барабанов. Первая ступень предназначена для отмывки, вторая – для промывки, третья – для удаления воды, а четвертая и пятая – для сушки. Моющее устройство снабжено соплами распылителя для удаления пищевых остатков и прочих загрязнений.

По мере продвижения материала через барабан, загрязнения отмываются и удаляются вместе с водой. Система водоснабжения представляет собой замкнутый цикл: использованная вода нагревается и очищается при помощи седементации и фильтрования.

Во втором барабане материал промывается свежей водой. В третьем барабане из материала удаляется вода, поступающая в дальнейшем в водяной танк отмывки.

12 3 4 5 6 7 8 9 10 11 Рис. 2.8. Линия по переработке использованных ПЭТФ бутылок:

1 – питатель пресс-пакетов; 2 – конвейер предварительной сортировки;

Pages:     | 1 |   ...   | 6 | 7 || 9 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.