WWW.DISSERS.RU

    !


Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 9 |

p ycaoec pee pao epy ocao, opoa a ocoe H0 caaec ypae oo a ocao, opaoac a ce.

Ta opao, a e S axoc oca, opaoaec a pe opaoo poo xoo.

p ceye opao xoe oe x ocao caec, a oa ocaa -a cya yeaec o h0. o poecc oo oca cey ypaee Vk = (xocV1 + xocV2 + xocV3), (42) c e Vk 2Rch0kS = kh0F oe ocaa oo h0 oe opaoo xoa; c oe ca ocaa.

ypae (42) = + +. (43) Ta opao, yx eecx k eec a ypae (41) (43), oopx o opeec.

pooeoc epy o pay oe poa = + + = + +. (44) poep oyex acoce poee cepe a HooCeoco ao oae. Cyce eoo ac xoco oa paeac a epye 1/2-401-. Peya epe pee a.

4. oeco paa oce epy, opeeeoe o ec [6] ypae epapoc ooo oce ycpee peyao cepeo, pao 5 = /. Ec ec oeco paa, eeoe oce o poa (aoc ocaa W = 35 %), oy oeco paa, eeoo oe poa, = - = 1325 /.

1 - 1+ aee oe poa opeeoc o ypae (30) 1 1 = 1- 1 = 1 /2.

Taa Bec oc c Baoc aop : T ocaa, pao, ocaa, paee / cyce / / % 1 1800 1,06 203 4,75 2 1720 1,10 206 4,90 3 1840 1,25 218 5,25 4 890 1,20 110 3,85 5 2180 0,90 160 5,15 6 1630 1,00 160 5,10 7 1540 1,09 180 5,37 8 1540 1,09 154 4.40 9 1390 1,70 150 3,78 10 2530 1,45 174 5,55 11 2240 1,10 127 5,35 12 1310 1,04 203 4,40 13 2120 1,07 132 3,78 14 1930 1,48 120 5,15 1670 1,23 125 5,35 Teepaypa cyce, ocyae epyy cocaa 25 30 C. ae o payoepeco cocae epo a oaaeo cyce ocae pecae a. 5. oepxoc xoa oae F = 0,05 2, oepxoc F2 = 0,05 2, oepxoc F0 = 0,075 2. Paccoe ey ypae oo co H0 = 0,0375 . Xo ca S = 0,04 . co ox xoo oae ceyy i = 0,5 c-1.

Oopeeo pooc cepe o opeee acoc yeoo copoe ocaa o e cyce o ae poa.

aao ae ao cepee o 1 104 o 4 104 /2. Teepaypa poa 84 10 C (aee coaaoc ao aoa c o CO2).

eoe copoee ocaa, epecaoe a yco epypoa (c yeo ee oc payoepecoo cocaa), pao roc= 0,487 109 c/4.

Taa % coepa (ec) ocae Paep Cyce Ocao ac, Cpe O 1 O 2 O 1 O 2 Cpe +0,0,5 0,25 37,0 25,6 31,3 41,2 38,6 39,0,25 41,7 54,0 47,85 43,1 45,7 44,0,16 7,9 6,4 7,15 7,5 7,6 7,0,16 3,9 3,7 3,3 2,6 2,2 2,0,1 1,9 1,5 1,3 0,6 1.6 1,0,1 7,6 9,8 8.7 5,0 4.3 4,0,0,Coaco ypae (36, 37a, 38a, 41a 44) oeco paa, eeoo oe poa, oo pao:

= + + = + = 0,000281 3/c = 1010 /;

= V =1,28 1010 = 1290 /.

Peya cepea pacea xopoo coaa. B peyae cceoa oye acoc, cae oeco paa, oyaeoo oe poa epy a pe ooo xoa = co coca cyce ocpy apaepa epy (Rc, S0, S, H0, ). cepe oaa oooc x pee opa poep ocpyx apaepo epy [18].

oyea ae acoc ey coca ocaa oa aee poa, ooa ec poecc c acao copoc poa.

2.1.4 Ocoeoc pacea epy Haoee oeco o a epypyeo cyce oeec ocoo a yace c, opaeo epee ceo ycpyeo op ae poo ypaeoo oa. oepxoc o o coca 8 10 % ce paoe oepxoc poopa. B ocao ac poopa pocxo epoea cya poa ocaa. Ha epyax ocoo opaaac pyopcaece oeppoae cyce, o oy pec pyocepce cyce, oopx epee ypae epoeoo poa, ocoae a eo acoc ey copoc poa aee. ooy epy ceye pa pacca a ocoa peyao peapeoo poa aoo poya a aopaopo epye aoo a ae ea epepace a poey.

pe ycoo oy co cyce oe poa pao pacco ey ceo poopa apyo poo ypaeoo oa.

Toa aee poa oo opee o ypae, H/ - =, (45) e R ype payc poopa, ; r apy payc ypaeoo oa, .

paee (45) oo peopaoa =, e Frcp cpe aop paee epy; h oa co ocaa, paa R r.

yc cpe copoc poa paa ee v, /c. Toa a pe ooo xoa op oyaec oeco paa = (46) e x pooeoc ooo xoa oae; ST a xoa, .

pe ypaee (46) aopaopo poeo epya:

= ; (47) =. (48) coc, o aopaopo poeo epy e Frcp h pa.

Toa yy oao ae poa, a ceoaeo, copoc poa. coc ae, o yoex epy pa e S x.

Pae ypaee (48) a (47), oy = oya =.

Ceoaeo, oo, o ycao pooeoc poeo epy, eoxoo poec peapeoe epypoae poya a aopaopo epye ax paepo. p o yo oece paeco aopo paee, o co cyce oe poa, xoa ope, copoc e ope oex epy. Ha aopaopo epye ceye oc aoe pooeoc.

pooeoc poeo epy o ocay axo coooe = e G pooeoc aopaopo epy o ocay, 3/c.

p o, ya, o oeco ocaa, oyeoo ey pee, poopoao oecy paa, oeeoo oe poa, opeee pooeoc pea ocaa epye.

Cpe copoc e ocaa o poopa = (49) c pyo copo = (50) e L a o cy ocaa, oopy peo oo p pao e poopa; c pooeoc epoa cy ocaa pea eo poope.

ppaa oe ac opy (49) (50) pea oyeoe ypaee ooceo c, opeee = =, (51) e F oepxoc poopa, 2.

Opeee eep aoc ocaa, aaeoo poeo epyo, ca, o epyax ee eco pe epo epoeoo poa =, (52) e K oe; S yea oepxoc ocaa; oc oc; Fr aop paee epy; pe.

oca o ypaee pooeoc pea ocaa poope, ypae (52), ae a c W a W oey aoc ocaa, oy =.

pe paeco (53) aopaopo poeo epya, oy:

= ;

=, e W W oea aoc ocaa, ocaea a poeo aopaopo epyax. Pae oo ypaee a pyoe =.

Bo cyae, oa Fr = Fr, h = h, =, oceee ypaee pe =, ya, o F = 2RL, =.

coe ae ceee eoepecx ceco pao ac oceeo paeca oye opeeeoo acca poyo. B oe cyae =.

2.1.5 Pace pooc pyox oe apacoo poopa epy Cpe eeo apacoo poopa [19, 20] epy ec oa, apyee epeypo ococ p cepo pacooe pa cocpeooe ca P, a oaao a pc. 37. o ey oopa pae yy ey ca.

P P P Pc. 37 oo apacoo poopa Pacey ax eeo a oa, apyee pa a apyo, oceo oo pao. O aop, a A. . Cea, .. pope M. . ypco [ 24], pe eo paoe cocpeooex cox aopo p ype.

pye, a . . eo P.. pae,. . ao [25, 26], pe "peey ccey c oeo", oeay pace oe. Bce yoye aop, a ae A. . ype [27, 28], pea oy aay, oa oy poe pae o ee c oe pax oax oa. Peee ao aa ooceo coo.

cya ocaoo e oa (pc. 37) oo a oee poce acoc [30].

Paccop ee oa (pc. 38). B oex ceex eea oa ecye a oe Mx0, py oe M0 oepea ca Qy0. Oce yo eec po acoo cpe.

B ceex o = 0 o = + ecy ceye oe c:

= - - = + - 1- (54) = B ceex o = + o = ecy e oe c:

= - - + [ - + ] = + - 1- + 1- [ - + ] = - (54a) Mz0 QyP Qy Mz MxMxPc. 38 ee oa apacoo poopa axoe eecx Mx0, Mz0, Qy0 ee paee yco. -a cepoc oa ae pye oe a oox oax eea pa ey coo:

= = = ;

= = =.

po a oax -a a oop pa y. Coaco eopee aco o ycoe pac a:

= ;

= + +, e Ix oe ep cee oa ooceo oc X; Ip op oe ep cee oa; F oa cee oa. Kc oe eoepeco op cee oa; E oy ypyoc epoo poa aepaa oa; G oy ypyoc opoo poa aepaa oa.

ypae, cocaex a ocoa paex yco, ye ce oyea ccea ypae:

2Mx0sin2 + Mz0 sin2 + Qy0 R sin2 = PR sin( );

Mx0sin2 + 2Mz0sin2 + 2Qy0Rsin2 = PR [1 cos( )]; (55) 2Qy0 = ( ) P.

oopo eo opeec:

= - - = - = Toa ypae (54) (54a) py cey :

= - - - = (56) - + - - 1- - = = - - - + [ - + ] = - + - - 1- + (56a) + 1- - + + = - cpea aa oyex y a ceye peya.

y Mx epae o = 0 o = +, e e cpeya, yeaec o = - o = - -, poxo epe y + + oe =.

B epae o = + o = 2 y ae e ee cpeya yeaec + o Mx(+) o Mx(2) = Mx(0), poxo epe y oe =.

y Mz epae o = 0 o = + ee acy oe = ( + ) / 2, e y paa + - =.

+ - 1- Bo epae y poxo epe y oax 1- + = .

- B epae o = + o = 2 y Mz ee oe = (3 + ) / y - - = + - 1- + - +.

1- Bo epae y poxo epe y oe 1- + = -.

+ pa y Mx, Mz, Qy cya = 60, = 24 oaa a pc. 39. Peya pacea o ypae (56) (56a) ooc coa c peyaa pacea o py coa.

Oca eo pee pacey oa pc. 40, 41, apyeoo cocpeooe ca ococ p.

p o oye ceye acoc ey ype e apya:

= - = - (57) - = - P P P Pc. 40 oo, apyeoe cocpeooe ca ococ p My0 My Qz0 Qz 0,5P 0,5P C Pc. 41 ee oa cpea aa oaa, o y Qz epae o = 0 o = ee acy oe = =.

y Qx e ee acya o e epae eec o Qx = 0,5P oe = 0 o Qx = -0,5P oe = 2, poxo epe y oe =.

y My eec o My = 0,5PR (1 / cos ) oe = 0 o aoo e ae oe = 2, poxo epe y oax = arccos ((sin ) / ) e y oe = 1 = -.

pa y Qx, Qz, My = 60 oaa a pc. 42.

oyee acoc (56) (57) pacea oe oo c ape o cee oa apacoo poopa, oopoe apyeo ce a apy. C eoop ypoe, e a opeoc oee 3 5 %, o pa:

= + + (58) + = + (59) e Wy oe copoe cee oa ooceo oc Y; Wx oe copoe cee oa ooceo oc X; b pa oa; S oa oa.

Macaoe aee ape e oe = 0. Ta opao, oye acoc, poce yoe cooa pacee oe apacoo poopa epy a pooc.

2.1.6 Pace apacoo poopa epy B acoee pe epyax c ycpye pyo ocaa pec poop apacoo a [29]. o poop a 30 40 % ee poopa c epoppoao oeao, yyae poecc poa epye oae aeoc paoe.

B poope a oo apaco oea opac cae cep aooo ca (pc. 43), a apya o acc ca ocaa epeaec a oeay ecax copocoe oopx oepxoce e pacpeeec paoepo o ce oepxoc oea, a o po cyecoax paceax epoppoax oeae. B ocoy eo pacea apacoo poopa ooeo cceoae oex ocpyx eeo oea [30]. apaca oeaa paccaec, a coeee oex pacex eeo (pc. 43).

co oce coa oceee oo ypee oa ypee ce oceoe oo oo apac poop H c R Pc. 43 apac poop B oeae apya o acc ocaa c epoeo oe ocpaec oa, a yce aa ocaa T ocpaec coa ep oo (epe o, yepae co). Ha ce oa co ecy apy o coceo acc epoeo oe qg. p o co (a cee ocex) apye oaoo e oaoe ocpye paep, ae a oa (poe epoo oceeo).

ypee co oa aa ype eeo oea. Bypeee oo apyeo coe ococ paoepo pacpeee ca (pc. 44) o acc ocaa c epoeo oe q.

Boe, apyeo a ca, oec pacaa ca N1 = q R. (60) o oo apyeo cocpeooe apya, paoepo pacpeee o opyoc o acc coe epoeo oe P. B o cyae oc pacae yc N1, ae oe M epepeae Qq qg q P P P P Pc. 44 Bypeee oo = = (61) - = 1 e 1 ooa ya ey coa; yo ey coo ceee, oopo opeec ape.

epoe oo oo c, yaax e, apyeo ae cocpeooe ca ococ, epeypo oy, o yc oax P, yepax co c ocao (pc. 45). Bo cyae ae oa ae oe M, epepeae c Q1, oec py oe W [3].

P qp qpqg qp qg Pc P P P Pc P Pc P P Pc P Pc. 45 epoe oo = 1- = (62) - - 1- = - e yo ey oo ceee ey coa; yo ey ceee, oopo opeec ape, ceee ey oa; c yo ey ceee, oopo opeec ape, ceee ey coa.

Coa apyea paoepo pacpeeeo apyo o coceoo eca c yeo payco opye ey coa oo. Ta a o ypee eee oea o oe copo oa pacooe oaoe co, paec, o ae oe a oax coe pa. ooy coa paccapaec, a aa c eco apee oa (pc. 46):

= + 4 (63) + = - Paccapa oo ypeeo eea oea oo oy ceyee aee ape oe = + + + qg T T l Pc. 46 Coa-aa c eco apee oa e = g ycopee c ec; = yoa copoc; = ye ec eaa.

Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 9 |






2011 www.dissers.ru -

, .
, , , , 1-2 .