WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 8 | 9 || 11 | 12 |   ...   | 15 |

2 (a - )2T* (a - )3T * 2 1 + aT = 1+ (a - )T* + +.

2 2! 3! После преобразований получаем квадратное уравнение относитетельно Т*:

(a - )3T * + (a - )2T * - = 0. (2.41) 3 Окончательно, выпишем положительное решение квадратного уравнения (2.41):

2 2 (a - )((a + ) - (a - ) 2 6 Т*=. (2.42) (a - )3 ГЛАВА 3. КРАТКОСРОЧНЫЕ СТРАТЕГИИ ПРОГНОЗИРОВАНИЯ ДИНАМИКИ РЫНКА 3.1. Роль методов нелинейной динамики в прогнозировании случайных процессов с детерминированной компонентой Философы и социологи часто называют современную цивилизацию «обществом риска». А в дальнейшем, с развитием научно-технического прогресса, повсеместным внедрением био-, инфо- и прочих неотехнологий, спектр рисков и возможные масштабы катастроф будут только увеличиваться. В этой связи все более актуальной становится задача управления рисками – прогнозирования и предупреждения всякого рода катаклизмов.

Связь между идеями нелинейной динамики и управлением рисками стала ясна недавно. Осознать ее помогла парадоксальная статистика техногенных катастроф. С помощью математического аппарата нелинейной динамики было показано, что все образчики «чудовищного невезения», сопутствующего прогрессирующему человечеству, вроде аварии на комбинате «Маяк», чернобыльского взрыва, гибели «Конкорда», СаяноШушенской ГЭС зачастую подчиняются неким универсальным сценариям возникновения хаоса из упорядоченного состояния, т.е. представляют из себя вариации на тему класса процессов с ограниченной предсказуемостью.

«Хвосты» этих распределений убывают гораздо медленнее нормального, за что они получили название «распределений с тяжелыми хвостами». В этом случае вероятности отклонений от средних величин уже существенно больше по сравнению с распределением Гаусса.

Еще в середине 30-х годов создатель знаменитой «шкалы землетрясений» Чарльз Рихтер высказал предположение, что именно «распределения с тяжелыми хвостами» ответственны за катастрофы. В дальнейшем теория риска установила, что этот закон распределения вероятностей имеет фундаментальный характер для процессов, в которых существует обратные связи и неконтролируемое развитие процесса приводит к катастрофам. Сегодня исследователи сходятся во мнении, что степенные распределения «с тяжелыми хвостами» описывают не только природные, но и разнообразные техногенные катастрофы: аварии на атомных станциях и химических предприятиях, разрывы трубопроводов, неполадки в компьютерных сетях, более того, ими в значительной степени определяется развитие биосферы и поведение финансовых рынков. «Степенная» статистика описывает явления, при которых ущерб от одного самого крупного события может превосходить ущерб от всех остальных событий этого класса вместе взятых.

Ответ на вопрос, откуда берется степенная статистика, удалось получить благодаря новой парадигме нелинейной динамики – теории сложности и построенной в ее рамках теории самоорганизованной критичности.

Для всех степенных распределений общим является возникновение длинных цепочек причинно-следственных, в том числе обратных, связей:

одно событие может повлечь другое, третье и т.д., в результате чего происходит «лавинообразный» рост изменений, затрагивающих всю систему.

Причем окончание «лавины изменений» – переход к новому состоянию равновесия – может произойти не скоро. Исследование сложных систем, демонстрирующих самоорганизованную критичность (т.е. все тех же систем, относящихся к классу процессов с ограниченным горизонтом прогноза), показало, что такие системы сами по себе стремятся к критическому состоянию, в котором возможны «лавины» любых масштабов. Поскольку к системам такого сорта относятся биосфера, общество, инфраструктуры различного типа, военно-промышленный комплекс, множество других иерархических систем, результаты теории самоорганизованной критичности очень важны для анализа управляющих воздействий, разработки методов прогнозирования и «упреждающей защиты» от этих явлений.

Именно на базе нелинейной динамики теория рисков выработала своеобразную технику работы с незнанием, направленную на поиски закономерностей поведения произвольной нелинейной системы как целого.

Оказывается, компьютерный анализ большого массива статистических данных позволяет выявить так называемые «предвестники» катастроф. Даже незначительный рост этих медленно меняющихся величин, рассчитываемых по определенным сложным формулам, сигнализирует о надвигающейся опасности.

Одним из первых идею о подобном применении методов нелинейной динамики высказал более 20 лет назад Владимир Кейлис-Борок (ныне – академик РАН, директор Международного института теории прогноза землетрясений и математической геофизики). Под его руководством был создан алгоритм прогноза, основанный на накопленных за многие годы данных сейсмической активности. Этот метод получил название М8, поскольку предназначался для прогноза достаточно сильных (более чем в баллов) землетрясений. С 1985 года началось систематическое применение разработанного российскими учеными алгоритма. За это время было успешно предсказано пять из семи происшедших крупнейших землетрясений, в том числе Спитакское и Калифорнийское. Впрочем, «удачные» предсказания едва ли могут серьезно облегчить работу соответствующим «службам спасения»: точность данного метода крайне невелика – прогноз выдается с неопределенностью по времени в один – два года и с неопределенностью в пространстве в 200...400 км. Не слишком успешно применение данного метода и к прогнозу землетрясений слабее баллов. Но даже с учетом этих оговорок продемонстрированная алгоритмом M8 возможность предсказывать землетрясения за несколько лет до их наступления представляется серьезным научным достижением.



Более того, уже обкатанный на прогнозе природных катаклизмовалгоритм был применен Кейлис-Бороком с сотрудниками и в социальноэкономической сфере. В рамках метода M8 анализировались экономические Keilis-Borok V.I. (ed). Intermediate-term earthquake prediction: models, algorithms, worldwide tests // Phys.

Earth Planet. Inter. 1990. Spec. Iss. 61, N1/2.

рецессии в США с 1963 года по 1997 год. За основу были взяты ежемесячных характеристик экономики США – объем ВВП, суммарный личный доход граждан, уровень безработицы и др. Расчеты на базе этих данных позволяли определить так называемые промежутки тревоги – периоды времени, за которыми должны были последовать рецессии. И действительно, все пять рецессий, происходивших с 1963 года по 1997 год, предварялись периодами тревоги. В одном случае тревога длилась месяцев, в другом – 10, а в оставшихся трех случаях – по 3 месяца. Правда, данное исследование было ретроспективным, и результаты прогнозов группы Кейлис-Борока о следующих катаклизмах в американской экономике диссертанту не известны.

Наиболее яркий пример взаимопроникновения точного естествознания и наук об обществе – возникшее в середине 90-х годов новое междисциплинарное направление, эконофизика. Официальной датой ее рождения считается 1997 год, когда в Будапеште была проведена первый «эконофизический» семинар- конференция, а начиная с 1999 года Европейское физическое общество поставило организацию конференций «Применение физики в финансовом анализе» на поток – в декабре этого же года в Лондоне состоялась уже третья по счету конференция «эконофизиков». Проведение первой международной конференции состоялось в Бали в 2001 году. Секция эконофизики – неотъемлемая часть многих ежегодных международных и националных конференций по социальным наукам (ESHIA international Heterogeneous Interacting Agents), AKSOE и др.) В России первый Всероссийский конгресс по эконофизике состоялся 34 июня 2009 г.

Многочисленные зарубежные последователи новой дисциплины (подавляющее их большинство по образованию – физики), вооружившись методами нелинейной динамики, сегодня активно вторгаются в заповедную зону экономической науки – в анализ и прогнозирование разнообразных финансовых потрясений (ибо, как мы уже отмечали, финансовые рынки, согласно представлениям нелинейной динамики, – всего лишь одна из вариаций систем с ограниченной предсказуемостью). Характерный пример подобных попыток – исследования группы Дэвида Лэмпера из Оксфордского университета. Лэмпер создал модель, позволяющую, по его мнению, эффективно предсказывать финансовые катастрофы. Его модель базируется на анализе стандартной системы, состоящей из множества игроков, конкурирующих друг с другом за ограниченные ресурсы. «Всеобщая взаимозависимость» поведения игроков приводит к тому, что система в целом оказывается очень чувствительной к небольшим флуктуациям. И хотя подавляющее их большинство так и остается малозначимым для рынка, отдельные «мелочи» способны вызвать «лавины изменений». Декларируемая новизна подхода Лэмпера состоит в том, что ему удалось «нащупать очаги будущей катастрофы» (те самые «предвестники», выявление которых – важнейшая задача «рискового прогнозирования») – ими оказались так называемые коридоры предсказуемости, внутри которых краткосрочные изменения параметров рынка с высокой степенью определенности соответствуют рациональным ожиданиям. Как ни странно, именно эти небольшие периоды «повышенной предсказуемости» поведения рынка зачастую предвещают последующие серьезные катаклизмы. С результатами его компьютерного моделирования вполне коррелирует и другое исследование флуктуаций финансовых рынков, проведенное Рикардо Мансиллой (Национальный университет Мехико). Мансилла также пришел к выводу, что непосредственно перед резкими изменениями на рынке возрастает предсказуемость. К этим же выводам приводят результаты исследований по оценке степени детерминированности временного ряда методами нелинейной динами и теории хаоса авторов настоящей книги.

Лавинообразный рост исследований, наблюдающийся в последние годы в сфере анализа и прогнозирования процессов с ограниченной предсказуемостью, безусловно, в значительной степени объясняется увеличением вычислительной мощи используемых при моделировании этих процессов компьютеров. Однако, по мнению ведущего отечественного специалиста в данной области, заместителя директора Института прикладной математики РАН профессора Георгия Малинецкого, оптимистические ожидания, типичные для нашего общества, связывающего слишком много надежд с компьютерными технологиями, пока явно опережают реальный прогресс в этой научной сфере: «Вначале предполагалось, что автоматизированные системы управления позволят резко повысить эффективность экономики. Но экономика оказалась не готова к этому.

Большие надежды возлагались на вычислительный эксперимент, связанный с компьютерным решением различных уравнений. Но выяснилось, что для описания многих важных объектов у нас нет соответствующих уравнений, а если они и есть, то определение коэффициентов и настройка модели сами по себе представляют исключительно сложную задачу. Ахиллесовой пятой алгоритмов прогноза для социально-экономических систем и задач по управлению риском являются данные. Для того чтобы «научить» соответствующие компьютерные системы, нужно иметь длинные ряды достоверных и достаточно точных данных, характеризующих различные стороны изучаемого объекта. Пока этого практически нигде нет. Только восполнив этот пробел, можно существенно повысить качество прогноза».





На сегодняшний день основная масса литературы, посвященной рыночной экономике, основывается на линейных моделях. Такие модели имеют ограниченную пользу, не отвечают реальному поведению рынка, не дают объяснений внезапных сильных колебаний на финансовых рынках.

Можно отметить разрыв между действительными экономическими реалиями и экономическими теориями.

В последнее время все большее внимание уделяется исследованию финансовых временных рядов с точки зрения теории хаоса [9-10, 52, 91, 97,113- 114]. Это достаточно новая область, которая представляет собой активно развивающийся раздел математических методов экономики.

Математическая теория хаоса, являющаяся одним из направлений нелинейной динамики, позволяет выявить сущность глубинных экономических процессов, часто скрытых и неявных, и разработать основу для принятия решений в таких ситуациях [47, 48, 129]. Возрастание интереса к нелинейной динамике можно связать в основном с двумя факторами – широким распространением и доступностью мощных персональных компьютеров и осознанием важности изучения динамики хаотических систем. Появление ПК вызвало к жизни экспериментальные исследования, которые оказались необходимы ввиду неполноты теоретических представлений в данной области. Обнаруженные на практике хаотические системы породили весьма важные, трудные, но интересные задачи на всех уровнях: от самых абстрактных математических до конкретных задач прикладной физики.

Можно выделить два основных этапа в развитии нелинейной динамики:

[56, 67]:

1. Этап диссипативных структур (1950-1980-е гг.). Понятие «диссипативных структур» было введено И. Пригожиным [69], основателем современной теории сложности, нобелевским лауреатом, и относится прежде всего к диссипативным процессам (т.е. к процессам вязкости, диффузии, теплопроводности). Такие процессы позволяли исследуемым системам «забыть» начальные данные и сформировать с течением времени подобные стационарные структуры. Задача анализа сводилась к определению изменения и конфигурации структур при вариации внешних параметров и начальных данных. Соответствующий математический аппарат нелинейной динамики на этом этапе определялся качественной теорией ветвлений (бифуркаций) решений дифференциальных уравнений. Эти разделы математики интенсивно разрабатывались со времен А. Пуанкаре (конца XIX века), успешно применялись в теории колебаний, (в том числе и в г.

Воронеже, группой ученых под руководством профессора М.А.

Красносельского), что не в последнюю очередь обеспечило первые успехи синергетики.

Математическими образами эпохи стали притягивающие множества (аттракторы) в фазовом пространстве, при этом простейшим аттракторам – неподвижным точкам – соответствовали стационарные, не меняющиеся со временем структуры, а с 70-х годов XX века - более сложные структуры – аттракторы, предельные циклы – различные периодические волновые процессы.

2. Этап динамического хаоса (с начала 1980-х гг. и по настоящее время) [58, 109]. Термин «детерминированный или динамический хаос», под которым понимается непредсказуемое поведение детерминированных систем, был введен в научный обиход в 1975 г. Т.-У. Ли и Дж. Йорком.

Термин «динамический» (детерминированный) означает, что отсутствуют источники случайных флуктуаций. Важным понятием данного этапа стала чувствительность к начальным условиям: экспоненциальное разбегание двух близких траекторий для класса хаотических аттракторов. При этом скорость разбегания можно определить путем вычисления положительной величины наибольшего показателя Ляпунова. Вследствие этой чувствительности становится невозможным сравнить траекторию объекта и модели для одних и тех же моментов времени, так как даже малая ошибка в начальных данных будет экспоненциально нарастать, что приведет, в конечном счете, к совершенно разным траекториям. Поэтому приходится ограничиваться либо кратковременными прогнозами, либо искать адекватные способы сравнения поведения модели и объекта (например, возможно использование некоторых функционалов от траектории, определяющих количественные характеристики хаоса). К основным типам задач, которые решались на этом этапе, можно отнести задачи анализа временных рядов (в частности, нахождение горизонта прогноза), построения прогнозирующих систем, определения законов движения объекта по ограниченному ряду наблюдений.

Можно отметить, что необходимость большой выборки очень точных измерений, предшествующих состояний объекта, для алгоритмов нахождения количественных характеристик хаоса и построения прогнозирующих систем делает эти алгоритмы достаточно «капризными».

Как указывается в [67] «В то же время живые существа такими данными для обучения не располагают, поэтому неясно, как им удается эффективно ориентироваться в быстро меняющейся обстановке. Таким образом, можно сказать, что возник новый класс задач, весьма сложный для разработчиков программ и легко решаемый биологическими субъектами».

Символами этой эпохи [109] стали субгармонический каскад, множества Кантора, аттрактор Хенона, система Лоренца. Заметим, что именно Э.

Лоренц в 1963 г. явился одним из основоположников теории хаоса.

Можно выделить следующие причины, вызвавшие повышенный интерес на сегодняшний день к теории хаоса:

исследование хаоса обеспечивает новые концептуальные и теоретические средства, позволяющие понять сложное поведение систем, которое не удавалось объяснить другими теориями;

Pages:     | 1 |   ...   | 8 | 9 || 11 | 12 |   ...   | 15 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.