WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 11 | 12 || 14 | 15 |   ...   | 17 |

s Поправочный коэффициент K (m) зависит не только от размеров и сроков выплаты j купонных платежей по облигации, но и от состояния временной структуры процентных ставок в момент реинвестирования, которое определяет цену покупки новых облигаций. Используя предположение об устойчивости динамики временной структуры процентных ставок, можно определить m Ct s K (m) (2.3.5) Pjs(t) j 1+, t где Ct – размер купона, выплачиваемого через промежуток времени t, Pjs(t) – цена облигации выпуска j через промежуток времени t при реализации сценария перемещения временной структуры процентных ставок, который определяется той же комбинацией квантилей распределения будущих значений главных компонент, что и сценарий состояния временной структуры процентных ставок в конечный момент времени.

Полученная выборка доходностей облигаций позволяет оценить математическое ожидание E(h(m)) и среднеквадратическое отклонение (h(m)) распределения доходности портфеля за период m по формулам S J x hS (m) j j s 1 j E(h(m)), (2.3.6) S S J s ( x hj (m) E(h(m))) j s 1 j (h(m)), (2.3.7) S где xj – доля вложений в облигации выпуска j в рыночной стоимости портфеля в начальный момент времени, S – число сценариев перемещения временной структуры процентных ставок, J – число выпусков облигаций, включенных в состав портфеля.

статистика данные о выпларыночных цен чиваемых доходах построение временных структур процентных ставок временные структуры процентных ставок выделение главных компонент главные компоненты временной параметры структуры процентных ставок зависимости процентных ставок от идентификация порядков моделей значений ARIMA динамики главных компонент главных компонент параметры моделей ARIMA динамики главных компонент расчет квантилей условных распределений будущих значений главных компонент квантили условных распределений будущих значений главных компонент построение сценариев перемещения временной структуры процентных ставок сценарии перемещения временной структуры процентных ставок построение выборок цен и доходностей облигаций выборки цен и доход- информация о ностей облигаций структуре портфеля оценка параметров распределения доходности портфеля математическое ожидание и среднеквадратическое отклонение доходности портфеля Рис.2.3.1. Методика сценарного анализа процентного риска портфеля государственных облигаций.

Методика сценарного анализа процентного риска, разработанная диссертантом, дает возможность ответить на ряд вопросов, имеющих как прикладное, так и теоретическое значение. Во-первых, она позволяет измерить ожидаемую доходность и риск портфелей государственных облигаций и сопоставить их с характеристиками альтернативных объектов вложений. Во-вторых, она позволяет оценить характер соотношения между доходностью и риском для различных портфелей облигаций и определить структуру эффективных портфелей, обеспечивающих наибольшую ожидаемую доходность при заданной степени риска. Втретьих, она позволяет выяснить, как изменяются значения показателей доходности и риска при увеличении срока вложений инвестора.

Эти вопросы стоят наиболее актуально на нестабильных развивающихся рынках, характеризующихся высокой изменчивостью конъюнктуры и краткосрочным характером операций большинства инвесторов. Такими признаками в полной мере обладает и российский рынок ГКО-ОФЗ. Поэтому разработанная методика сценарного анализа была использована для раскрытия закономерностей, связывающих на этом рынке структуру портфеля, срок вложений инвестора, ожидаемую доходность и степень риска.

На основе выборки временных структур процентных ставок российского рынка ГКО– ОФЗ, построенной по итогам торгов, проходившим в течение периода с 1 сентября 2000 г.

по 28 марта 2001 г., автором была произведена оценка главных компонент вектора десяти спот-ставок для сроков вложений от 0.04 до 2.82 г. Две первые главные компоненты оказались способными объяснить 95.58% суммарной дисперсии выборки, что позволило считать их достаточно репрезентативными для адекватного описания всей временной структуры процентных ставок. Процедура варимаксного вращения осей75 позволила связать главные компоненты с динамикой краткосрочных и долгосрочных процентных ставок.

Первая главная компонента, отвечающая за уровень краткосрочных процентных ставок, объясняла 47.82% суммарной дисперсии выборки, вторая, отвечающая за уровень долгосрочных ставок – 47.76%.

В рамках методики, разработанной диссертантом, построение сценариев будущих значений главных компонент временной структуры процентных ставок предполагает идентификацию моделей случайных процессов, которые определяют характер их динамики. Для этого использовался анализ автокорреляционных и частных автокорреляционных функций рядов первых разностей.

см. Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. – М.: Финансы и статистика, 1998. – с.224.

Лаг Корр.

1 -. 2 +. 3 -. 4 +. 5 -. 6 +. 7 +. 8 -. 9 +. 10 -.-1.0 -0.5 0.0 0.5 1. Рис.2.3.2. Автокорреляционная функция первой разности главной компоненты уровней краткосрочных процентных ставок.

Лаг Корр.

1 -. 2 -. 3 -. 4 -. 5 -. 6 -. 7 +. 8 -. 9 +. 10 -.-1.0 -0.5 0.0 0.5 1.Рис.2.3.3. Частная автокорреляционная функция первой разности главной компоненты уровней краткосрочных процентных ставок.

Автокорреляционные функции первых разностей главных компонент временной структуры процентных ставок имеют резко выделяющиеся отрицательные значения на лаге 1. Частные автокорреляционные функции напоминают затухающие экспоненты. Поэтому динамика первых разностей главных компонент временной структуры процентных ставок описывается моделью скользящего среднего первого порядка MA(1) с положительным значением параметра 1:



Yt = t – 1 t-1. (2.3.8) Результаты оценки параметров моделей подтвердили правильность произведенной идентификации. Все параметры оказались статистически значимыми, автокорреляция остатков не была обнаружена. Таким образом, динамика главных компонент временной структуры процентных ставок рынка ГКО–ОФЗ вполне удовлетворительно описывается моделями ARIMA(0,1,1).

Модели динамики главных компонент, оцененные автором, позволили построить сценарии будущих перемещений временной структуры процентных ставок. Сценарии строились на основе квантилей уровней 0.08, 0.24, 0.5, 0.76 и 0.92 условных распределений будущих значений главных компонент, период построения сценариев охватывал 8 недель. Таким образом, общее число сценариев оказалось равным 200. На основе значений ставокпредставителей, соответствующих каждому сценарию будущих значений главных компонент, было сформировано множество сценариев перемещения временной структуры процентных ставок, которое позволило оценить ожидаемую доходность и процентный риск различных портфелей государственных облигаций.

Особый интерес представляет среднеквадратическое отклонение доходности рыночного портфеля ГКО–ОФЗ, которое отражает уровень риска на рынке в целом. В целях сопоставления изменчивости доходности операций на рынке ГКО–ОФЗ с изменчивостью доходности в других сегментах российского финансового рынка построенная выборка сценариев перемещения временной структуры процентных ставок была использована для оценки среднеквадратического отклонения доходности рыночного портфеля ГКО–ОФЗ, которая рассчитывалась по формуле s ln(Pjs(m)K (m)) ln Pj (0) j P (0)V j j m j s hM (m), (2.3.9) P (0)V j j j где Vj – объем выпуска j в обращении по номиналу по состоянию на 28.03.2001.

В качестве представителей других сегментов финансового рынка нами рассматривались обменный курс доллара США к российскому рублю, а также индекс Российской торговой системы (РТС). Среднеквадратические отклонения доходностей вложений в доллар США и индекс РТС для сроков от 1 до 8 недель были рассчитаны на основе исторических выборок за период с 31.09.2000 по 28.03.2001.

ln(sd(h(m))) 0.m, недель 0.доллар США рыночный портфель ГКО-ОФЗ индекс РТС Рис.2.3.4. Зависимость натурального логарифма среднеквадратического отклонения доходности от срока вложений инвестора в различных сегментах российского финансового рынка.

Как свидетельствует рис.2.3.4, уровень риска, связанного с размещением средств на рынке ГКО–ОФЗ, существенно меньше (примерно в 9.7 раза) уровня риска операций на рынке акций, но больше (примерно в 2.6 раза) уровня риска операций на валютном рынке. На всех сегментах финансового рынка наблюдается обратная зависимость между сроком вложений и среднеквадратическим отклонением рыночной доходности. Следовательно, уменьшение уровня риска портфеля государственных облигаций при увеличении срока вложений не следует связывать с сокращением разрыва между дюрацией и сроком вложений. Гораздо сильнее проявляется другой эффект, общий для всех сегментов финансового рынка и обусловленный удлинением периода начисления процентов и увеличением знаменателя формулы расчета доходности.

Методика сценарного анализа, разработанная диссертантом, позволяет получить ответ на один спорный вопрос теории процентного риска портфелей ценных бумаг с фиксированным доходом применительно к рынку ГКО–ОФЗ. Дело в том, что в литературе высказываются два прямо противоположных мнения по поводу связи между дюрацией неиммунизированного портфеля и уровнем процентного риска, которому подвержен его владелец. Как полагают Г.Бьервэг, Г.Кауфман и А.Тоевс, зависимость между дюрацией портфеля и уровнем процентного риска близка к функциональной76. Чем больше абсолютное значение разности между дюрацией и сроком вложений, тем больше среднеквадратическое отклонение доходности портфеля и тем больше процентный риск, которому подвергается инвестор. Напротив, Р.Даттатрейа и Ф.Фабоззи считают, что показатель дюрации не может адекватно отражать степень подверженности процентному риску владельца портфеля, поскольку он учитывает лишь малую часть спектра возможных сценариев перемещения временной структуры процентных ставок77. Возможность непараллельных перемещений временной структуры, не учитываемая большинством показателей дюрации, оказывает существенное воздействие на уровень процентного риска портфеля, поэтому портфели, имеющие равные дюрации, могут характеризоваться различными среднеквадратическими отклонениями распределения доходности за период вложений инвестора.

Для того, чтобы выяснить, какая из точек зрения более адекватна ситуации, сложившейся на российском рынке ГКО–ОФЗ, нужно построить область возможных комбинаций значений дюрации и среднеквадратического отклонения доходности вложений. Для этого необходимо найти наибольшие и наименьшие значения функции S J ( x hs(m) E(h(m)))j j s 1 j (h(m)), (2.3.10) S удовлетворяющие системе ограничений J FW FW x D DG, (2.3.11) j j j J x 1, (2.3.12) j j x 0, j 1,J, (2.3.13) j FW FW где D – дюрация Фишера–Вейла облигации выпуска j, DG – целевое значение дюj рации портфеля.

Bierwag G., Kaufman G., Toevs A. Single factor duration models in a discrete general equilibrium framework. – Journal of Finance, 1982, Vol.37, No.2. – p.325-38.

Dattatreya R., Fabozzi F. Active total return management of fixed-income portfolios. – Chicago: Irwin, 1995. – p.105.

0.sd(h(m)),%/год 0.0.0.0.FW D, лет 0 0.5 1 1.5 2 2.Рис.2.3.5. Диапазон возможных соотношений между дюрацией и среднеквадратическим отклонением доходности портфеля при сроке вложений 8 недель на рынке ГКО–ОФЗ по состоянию на 28.03.2001.





Расчеты автора показывают, что среднеквадратическое отклонение доходности неиммунизированного портфеля возрастает с увеличением разрыва между его дюрацией Фишера– Вейла и сроком вложений инвестора. Однако зависимость между дюрацией и среднеквадратическим отклонением доходности портфеля не является функциональной. Как показывает рис.2.3.5, среди портфелей с одинаковой дюрацией наблюдается достаточно существенная вариация среднеквадратического отклонения доходности вложений. Таким образом, позиция Р.Даттатрейа и Ф.Фабоззи находит подтверждение на рынке ГКО–ОФЗ.

0.sd(h(m)),%/год 0.0.0.0.0.2 M, лет 0.2 2.2 2.4 2.6 2.8 3 3.Рис.2.3.6. Диапазон возможных соотношений между значением показателя M2 и среднеквадратическим отклонением доходности портфеля с дюрацией 1.5 г. для срока вложений 8 недель по состоянию на 28.03.2001.

Как показывает рис.2.3.6, важным фактором, определяющим разброс среднеквадратических отклонений доходностей неиммунизированных портфелей с одинаковой дюрацией, является степень рассеяния денежных поступлений вокруг даты окончания периода вложений. Чем больше значение показателя M2, тем меньше уровень процентного риска, которому подвергается инвестор.

По мнению диссертанта, это обусловлено эффектом диверсификации, проявляющимся при включении в состав портфеля денежных требований к эмитенту с короткими и длинными сроками исполнения. Поскольку значения краткосрочных и долгосрочных процентных ставок во многом определяются различными факторами, при увеличении значения показателя M2 происходит снижение коэффициента корреляции между темпами прироста рыночных оценок различных денежных требований к эмитенту, обеспечиваемых портфелем, и как следствие – падает общий уровень процентного риска.

Изучение характера взаимосвязи доходности и риска на рынке ГКО–ОФЗ предполагает построение границ области возможных комбинаций значений критериальных показателей эффективности для различных сроков вложений. Для этого необходимо найти наибольшие и наименьшие значения функции S J x hS (m) j j s 1 j E(h(m)), (2.3.14) S удовлетворяющие системе ограничений S J s ( x hj (m) E(h(m)))j s 1 j (h(m)) G, (2.3.15) S J x 1, (2.3.16) j j x 0, j 1,J, (2.3.17) j при различных значениях срока вложений m и целевого уровня риска G.

Таблица 2.3.1.

Структуры портфелей ГКО–ОФЗ, обеспечивающих максимум ожидаемой доходности при заданном уровне риска при сроке вложений 8 недель по состоянию на 28 марта 2001 г.

E(h(m)) 21145 21147 25014 25023 25024 25030 27005 27006 27007 27009 (h(m)) 0.0497 0.1637 0.8822 0 0 0 0 0 0 0 0 0 0.0.0648 0.1783 0.4755 0 0 0 0.1777 0 0.3468 0 0 0 0.0799 0.1872 0 0 0 0.5835 0 0 0.4165 0 0 0 0.0949 0.1946 0 0 0 0.1574 0 0.3968 0.4457 0 0 0 0.1100 0.2011 0 0.2640 0.2643 0 0 0.1130 0.3587 0 0 0 0.1251 0.2064 0 0 0.4247 0 0 0 0.5753 0 0 0 0.1401 0.2107 0 0 0.1734 0 0 0 0.8266 0 0 0 0.1552 0.2144 0 0 0 0 0 0 0.8566 0.1434 0 0 0.1703 0.2169 0 0 0 0 0 0 0.2832 0.7168 0 0 0.1853 0.2173 0 0 0 0 0 0 0 0 0.7462 0.2538 0.2004 0.2146 0 0 0 0 0 0 0 0 0 0.9386 0.0.2155 0.2039 0 0 0 0 0 0 0 0 0 0 1.Расчеты автора показывают, что наименьший уровень риска достигается при формировании портфеля, в котором доля краткосрочного выпуска ГКО 21145 составляет более 80%, а доля долгосрочного выпуска ОФЗ–ФД 28001 – менее 20%78. Максимальный уровень риска достигается при размещении всех средств инвестора в долгосрочный выпуск ОФЗ–ФД 28001. Наибольшим уровнем ожидаемой доходности характеризуются выпуски ОФЗ–ФД 27006, 27007, 27008 и 27009 со сроками до погашения от 1.82 до 2.19 г., наименьшим – выпуск ГКО 21145 и выпуски ОФЗ–ПД 25023 и 25024 со сроками до погашения от 0.34 до 0.г. Портфели, обеспечивающие максимум ожидаемой доходности вложений при заданном уровне риска, включают не более четырех различных выпусков. Поскольку доходности раз в расчетах использовались данные только о тех выпусках государственных облигаций, по которым 28.03.в Торговой системе ММВБ была заключена хотя бы одна сделка личных облигаций определяются общими факторами, потенциал диверсификации как метода управления процентным риском оказывается ограниченным.

0.E(h(m)),%/год 0.0.0.0.0.0.sd(h(m)),%/год 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 нед 2 нед 4 нед 8 нед Рис.2.3.7. Диапазоны возможных соотношений между среднеквадратическим отклонением и математическим ожиданием доходности вложений на рынке ГКО–ОФЗ по состоянию на 28.03.2001.

С увеличением срока вложений площадь критериальной области сокращается, а ее центр смещается в сторону оси ординат. Таким образом, несмотря на увеличение неопределенности по поводу будущих значений процентных ставок, которое выражается в расширении доверительных интервалов для значений главных компонент временной структуры и в увеличении размаха колебаний процентных ставок в рамках используемой выборки сценариев, удлинение периода вложений не увеличивает, а сокращает размах колебаний доходности вложений.

Увеличение срока вложений позволяет повысить эффективность инвестиционной операции. Рис.2.3.7 свидетельствует, что при заданном уровне ожидаемой доходности портфеля минимум среднеквадратического отклонения снижается с увеличением срока вложений, а при заданном уровне среднеквадратического отклонения максимум ожидаемой доходности портфеля увеличивается с увеличением срока вложений. В то же время при увеличении срока вложений снижается максимально достижимый уровень ожидаемой доходности (связанный с принятием инвестором большого процентного риска).

Pages:     | 1 |   ...   | 11 | 12 || 14 | 15 |   ...   | 17 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.